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Envelope solitons of acoustic plate modes and surface waves
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The problem of the existence of evelope solitons in elastic plates and at solid surfaces covered by an elastic
film is revisited with special attention paid to nonlinear long-wave short-wave interactions. Using asymptotic
expansions and multiple scales, conditions for the existence of envelope solitons are established and it is shown
how their parameters can be expressed in terms of the elastic moduli and mass densities of the materials
involved. In addition to homogeneous plates, weak periodic modulation of the plate’s material parameters are
also considered. In the case of wave propagation in an elastic plate, modulations of weakly nonlinear carrier
waves are governed by a coupled system of partial differential equations consisting of evolution equations for
the complex amplitude of the carrier wa(the nonlinear Schitinger equation for envelope solitons and the
Mills-Trullinger equations for gap solitonsand the wave equation for long-wavelength acoustic plate modes.

In contrast to this situation, envelope solitons of surface acoustic waves in a layered structure are normally
described by the nonlinear Schiinger equation alone. However, at higher orders of the carrier wave ampli-
tude, the envelope soliton is found to be accompanied by a quasistatic long-wavelength strain field, which may
be localized at the surface with penetration depth into the substrate of the order of the inverse amplitude or
which may radiate energy into the bulk. A new set of modulation equations is derived for the resonant case of
the carrier wave’s group velocity being equal to the phase velocity of long-wavelength Rayleigh waves of the
uncoated substrate.
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[. INTRODUCTION freedom[9—-14]. In the case of nonlinear waves described by
the Benjamin-Ono equation, this additional degree of free-
Modulational instability of plane carrier waves, envelopedom has dramatic consequences as it gives rise to a cancel-
solitons, and gap solitons have been discussed in variodation of the dominant nonlinearity in the NL&3].
areas of physics, especially in nonlinear optics, where they In systems that have an additional periodic spatial varia-
have been generated and investigated in experiments. Thesen of its properties, gaps may open up in the frequency
phenomena have also been envisaged for guided acousgpectrum of wave solutions of the corresponding linearized
waves in elastic plates and at solid surfagdg, for further  systems. In the presence of third-order nonlinearity, gap soli-
references on surface acoustic envelope solitons see Refins may form that are described by a set of two coupled
[2]), but have not yet been observed in experiments to ounonlinear evolution equations for the complex amplitudes of
knowledge, while several experiments have been carried odiorward and backward propagating waves with wave vectors
on wave form evolution of an initially sinusoidal Rayleigh at the edge of the first Brillouin zor{d.7,18. We shall call
wave in the presence of dispersi@+-5] and recently on the these evolution equations the Mills-Trullingé¥T) equa-
evolution of short intense pulses on coated substi@&$.  tions. It has recently been pointed out by lizuka and Kivshar
An important feature of nonlinear acoustics in comparison td19] that in the presence of second-order nonlinearity and
nonlinear optics is the unavoidable presence of second-ord@onresonant coupling between the carrier wave and its sec-
nonlinearity.(There is no acoustic analog of an optical Kerr ond harmonic, an extra quasistatic degree of freedom has to
medium) In systems with third-order nonlinearity with be accounted for explicitly, and the MT-equations are
second-order nonlinearity being absent, “slow” long- coupled to the wave equation for this additional degree of
wavelength modulations of a sinusoidal carrier wave and théreedom. lizuka and Kivshar have derived their modulation
formation of envelope solitons are described by the nonlineaequations using an effectively one-dimensional treatment of
Schralinger equatiorfNLS). The parameters occuring in the the propagation of light in a medium with periodically vary-
NLS follow from a nonlinear dispersion relation for weakly ing dielectric constant. In Sec. IV, we shall derive the corre-
nonlinear sinusoidal wavds]. sponding modulation equations for elastic plate modes.
However, in the presence of second-order nonlinearity, a The modulation equations for weakly nonlinear waves are
nonlinear dispersion relation for plane waves is not alwaysisually derived by carrying out an asymptotic expansion of
sufficient for the description of modulations of a weakly non-the wave field using multiple scales. The complex amplitude
linear carrier wave. Here, the carrier wave is coupled to quaef the carrier wave is usually chosen to be of first order in the
sistatic components of the wave field. It has been shown foexpansion parameter. In the following sections, we shall
nonlinear waves in various systems that the modulatiorshow that the quasistatic parts of the displacement field re-
equations are a NLS coupled to the wave equation or evoluguired by the second-order nonlinearity enter the expansion
tion equation for a long-wavelength low-frequency degree ofat differing orders ofe. For gap solitons in elastic plates,
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of y. In the elastic media, it has to satisfy the equation of
(a) motion

ZA

_Kv}_, 7
H
_}4» Here and in the following, Cartesian indices are denoted by
H X lower-case Greek letters, and for derivatives with respect to
ks the Cartesian coordinate; we use the short-hand notation

,B. Also, we invoke the summation convention for repeated
Cartesian indicesp is the mass density of the elastic me-
dium, and the Kirchhoff-Piola stress tensdr,) may be
expanded in powers of displacement gradien}s,

1
Tap=Cappulut 2Sap v ceUplge

4
+%Saﬁ,u,v§§)\0u/¢,uu§,§uh,a’+O(ua,ﬁ)- (22)

The elements of the sixth-rank tens@, ,,,, ;¢) consist of
linear combinations of second-order and third-order elastic
moduli, while the elements of the eighth-rank tensor
(Sap uv cero) are linear combinations of second-order, third-
order and fourth-order elastic mod{ii6]. At a free surface
(atz==*H in the case of a plate and at&d in the second
system under consideratigrihe boundary condition

T.,3=0 (2.3

for «=1,2,3 has to be satisfied. At the interface between film

FIG. 1. Geometries: free-standing elastic plé# homoge- and substrate &= 0 [Fig. 1(b)], there are the two boundary

neous elastic substrate covered by an elastic (fdm

conditions
they are of orderO(e?), for envelope solitons in elastic Taslz=0 =Taslz=o0,, (2.9
plates, they are of ordé (&), and for envelope solitons of
surface acoustic waves, they come into play at of@igr?). Uglz=0 = ua|Z:0+. (2.5

This latter fact implies that they do not influence the spa-

tiotemporal evolution of the complex amplitude of the carrierWhen describing surface waves, we also require that the dis-

wave at leading order, and this evolution is still governed byplacement field decays to zero for» —. At higher orders

the nonlinear Schiinger equation. of the expansion parameterin an asymptotic expansion of
However, there is a special case of resonant long-wavéhe displacement field, we may soften this latter requirement

short-wave coupling of guided acoustic waves propagating akeplacing it by Sommerfeld radiation conditions.

the surface of a coated elastic medium, namely, the group

velocity associated with a short-wavelength guided carrier IIl. ENVELOPE SOLITONS OF PLATE MODES

wave being equal to the velocity of the Rayleigh waves with ] ] ] .

wavelength very long such that the film only constitutes a 10 derive modulations of weakly nonlinear acoustic

small perturbation for their propagation characteristics. Invaves in an elastic plate, we follow usual practice and write

the last section, we shall discuss this case in some detail arifi€ displacement field as an asymptotic expansion in powers

derive the corresponding modulation equations. of an expansion parameter <1,
u(x,z,t)=eu®(x,z,t;X®, 7D: )
Il. BASIC EQUATIONS +2u@(x,2,t: XD TD: . )+0(ed)
The propagation of acoustic waves is considered in elastic (3.2

plates[Fig. 1(a)] and along the surface of a semi-infinte elas-

tic medium covered by a film made of a material differentwith stretched coordinaté$™ = ¢"x andT(" = &"t. We take
from the substratgFig. 1(b)]. The coordinate system is cho- the first-order field to be of the form

sen such that the z axis is normal to the surfaces. The elastic

plate fills the spatial regior- H<z<H, the substrate fills uBx,z,EXO T

the halfspacez<0, and the coating film the region<Qz =[AXD TOD; | HW(2)el@ Dt )
<d. The displacement field is assumed to depend on time

t and on the spatial coordinatesindz, but to be independent +UEOX® T, -y, (3.2
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consistent with the equation of motion and boundary condiinserting this into the equation of motion and boundary con-
tions at first order ok. Here,W(z) is the modal field of a ditions up to third order ire and making again use of the
linear plate mode with wave number and frequencyw. linear independence of the exponential factors[eXpx
This plate mode is the carrier wave and its modulations will-wt)], this time forn=0,+1,+2,+ 3, four inhomogeneous

be studied in the following. The quasistatic long-wavelengthlinear boundary value problems are obtainéfbr n

field contribution U9 does not appear in the first-order =0,1,2,3). If there is no resonance with a plate mode at the
terms of the equations of motion and boundary conditionsthird harmonic frequency and wave number, only two of
but will be indispensible later to satisfy compatibility condi- these boundary value problems are singular, namely, that cor-

tions at higher order. responding taa=0 andn=1 and require solvability condi-
The second-order field in Ed3.2) is conveniently de- tions. These two solvability conditions are the desired modu-
composed as follows: lation equations and can be brought into the following form:
u@={A2(XD, TO;  FRI(z)e2 (@)t cc) 9 1Pe P A NIAZA M A O
+{UCDZ XD T, | ellax-et el “V"77@ " 2 99? PEOE IAFA=M, axm ¢
HIAXD T, L )12FE0)(2) =0, (3.8
+UCLO XM T, -+ U@ T, )z, 2
(3.3 ZH[P@wm_[Cal p1~ Ca1 ual’1Cu3 g1l
When inserting Eq(3.3) into the equation of motion and the 5 P
boundary conditions at the two surfaces of the infinite plate, X Ud9=m,——|A[2. (3.9
the following explicit solutions are obtained when making gxwz| = F g&®
use of the linear independence of the factors[BXgx
—wt)] for n=0,+1,%2: In Egs.(3.8) and (3.9), we have introduced the real coeffi-
cients
J
U0 —chysglng’o), (3.9 M =1{Sa1 uv 26~ Ca1 o3l oaS\3 v e}
H
. . .
where ([,p) is the matrix inverse of the >83-matrix x f_H[DV(|q)W”(z)][D§(|q)Wg(z)] dz,
C .
( a3,83) (3.10
FOP= T .5Ss3 v e D (i)W, I[Diq)W,]*, .,
@9 N=Sup 0 ¢ f | [Puid)W, (@) I {[D (i) W,(2)]*
and we have defined the operatoD,(iq)=65,1iq ) 22) )
+8,3d/dz. A compatibility condition requires thaf\ de- X[Dg(2iq)F;(2) ]+ [Diq)W(2)]
pends on the stretched coordinatés) and T®) only via 1
ED=xD—v T whereV,=dw/dq is the group velocity. X[D40)F2()tdz+ =S
. .9 9 B a 2 af wv (€ ol
(For simplicity, we assume here that the symmetry of the
propagation geometry is such that the vector of the group H
velocity is pointing into the same direction as the wave vec- ><J [D,(I)W,(2)]*[De(ig)W,(2)]*
tor of the carrier wave.One then finds —H
X[Dg(i1q)W,(2) [[Dy(i10)W,(2)]dz, (3.11)
@hH— _j_— A
U, i PYIaFT w (3.6 "
Kk=2w pW(2)W,(z)dz. (3.12
-H

apart from a term that may be absorbedui.

If 2w is not close to the frequency of a plate mode with A strong simplification is achieved if the medium has cubic
wave number 8, the inhomogeneous linear boundary valuesymmetry and the axes of the coordinate system are along
problem for F?? has a unique solution that we shall not the cubic axes. In this case, we may classify the carrier wave
determine here explicitly. as sagittal or shear horizontal. In the latter case, modes cor-

At order O(¢3), we may decompose responding to the lowest branch of the dispersion relation

have to be excluded as this branch is nondispersive. The only

3 nonzero component of the vectdd is M; and, conse-

3)_ 3, . . i —w . . .
u )—Z:l {UBN(z,£H, T, . )eM @Dt c.c) quently, the carrier wave is only coupled ?, i.e., a
long-wavelength longitudinal plate mode. This applies to
+UGOX® T, . (3.7  both sagittal and shear-horizontal carrier waves. In terms of
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the variablesA and JU{*%9X™), Egs.(3.8) and (3.9) be- uD(x,z,t; €, 7)=A, (& 7)€@ “DW(z)
come the Zakharov equatioh2]. (= qx— wt)y s

Letting nowU{"? depend orX® andT® via ¢4 like A, +A_(§7)e W*(2)+c.c.
one may eliminate the variabld{"® from the modulation (4.1

equations(3.8) and (3.9 by integrating Eq.{3.9) once and ) ] ]
inserting the result foﬁu(ll,O)mg(l) into Eq. (3.8) to obtain The second-order term in the asymptotic expansion may be
the NLS decomposed as follows:

uB(x,z,t;£,7)={FZ2)(2) A% (¢,7)e2 (@D

{, 0 1w
|

(9T(2)+§z9_q2(,9§(—1))2] A—mA|2A:0 (313 +F(z’z_)(Z)Az,(f,T)EZi(_qX_wt)

+FCDAA (£ A (£ 2

with effective nonlinear coupling coefficient +F@O)(2)A, (£ 1)A* (£, 7)62%+c.c)
_ 1 [ N M3 ] 514 +UEO(z;¢,7). 4.2
= + e, .
K 2HP(V§—CE) To simplify the derivations, we now consider the special

case of an elastic medium of cubic symmetry with the cubic

whereC, = \/[(c3,—c2,))/(c11p) is the phase velocity of the axes along the_axes of the poordinate system. Furthermore,

longitudinal plate mode. The second term in the curlythe first-order displacement field? is chosen to have shear-

bracket of Eq.(3.14) has been missing in E¢3.4) of Ref. ~ horizontal polarization. This means thét has the simple

[15]. Depending on the slopé, of the plate mode dispersion form We(z) = 84,2 cosplz—H]) with p being a positive in-

curves, it can have either sign and influence the existenci€ger multiple of/(2H) and consequentlyow?= c(q’

criterion (Lighthill criterion) for envelope solitons. +p?). Generalization to arbitrary symmetry and polarization
The case of a resonance at the second harmonic frequent§ystraightforward.

has already been discussed in Rdf5,20. If there is a The second-order fiel_d(z) is of sagittal polarization. The

resonance at the third harmonic, i.e., if there is a plate mod&inctionsF{*!?) and F$*1), j=0,2, o=—,0,+, are solu-

having frequency @ and wave number @ the complex tions of the ordinary differential equations

amplitudeB of this waveguide mode has to be taken as an

extra independent degree of freedom. SiBaeay be chosen

to be of second order im, the modulation equation.8)

and (3.9 will not be affected.

2
0?2 — 2 4 J
pofdis—C11Qj, Caay2

ngxja)(z) + (012+ C44)in0'

Jd . )
x—F{I(2)=117(2), (4.39
IV. GAP SOLITONS OF PLATE MODES

2
We now consider periodic variations of the material prop-

erties of the plate. To keep the following derivations as
simple as possible, we shall assume that it is only the mass P
density of the plate that variep(x)=po+2p; cos(ZX). A X —F19(2)=1§(2), (4.3b
generalization to periodic variations of the elastic moduli or 9z

periodic corrugation of the plate’s surfaces is Stra'ghtfor'where()zg:Zw, 00,=0, Q,.=+2q, Qu=0. [The case

ward. S . " .
The periodic variation of the density introduces frequency(J 7) . (0’.0) does not occurThe mhqmogenemes are linear
. , . . : combinations of cdgp[z—H]), sirf(p[z—H]), sin@E[z
gaps in the dispersion relation of linear plate modes, and ongH])COS@[Z—H]) involvina  the counling — coefficients
may expect that nonlinearity leads to spatially localized ex- 9 ping

L2 . .7 . = ~C166+tC11, S = = Cy441+C12,
citations having frequencies in these gaps in the same way §&12121 Ss3 2328~ C166™ Cu1r Si1 2328~ Ssa21 26 Craat Crz

. . . . =S = Cus6+ Cys.
have been found long ago in the field of nonlinear optics™12123 <132123~~456 " ~44 - <
[17.18 gad P At z=*H, the functionsF{*?) and F{*/*) have to sat-

dsfy the boundary conditions

2 2
pofdj,— C44ng+cllﬁ

}ngitf)(z) +(Cqpt C44)ino'

To have the effects of the periodic variation of the sam

order as those of the nonlinearity, we use the scapng ) _ _

=¢2p,. Furthermore, we introduce stretched coordinates C4A[EF§|_2JU)+inGF(32JU):| =0, (4.49
=g2x and r=¢2t. The displacement field is then written as z=+H

an asymptotic expansion of forr{8.1) with, however, an
additional term of ordeD(so)tU(O), which only depends on [Cui ng,ia)+C12inG|:(12Jcr)} =349, (4.4p
stretched coordinates. The first-order term in this expansion Jz

is chosen as a superposition of two counterpropagating linear .

plate modes with wave vectors at the edges of the first Brilwherng") are constants. Apart from special resonant situa-
louin zone introduced by the periodic density variation, tions, which can be avoided by choosiggppropriately, the

z=*H
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J
solved in a straightforward way. — 1 pow? = Caaq*+ Cas 2

four boundary-value problems are nonsingular and may be [ 2] (3211)
u
The functionsU{?9(z;¢,7), U2%(z;£,7) have to satisfy

2
c J U9z & =0 (4.59
445521 6 T ) .

9 d
=1 4iwpo——A. I4iqc44a—§Ai + 2p1w2A+}

xcogp[z—H])+{iqG{H)(z)+ %Ggl'i)(z)]

Cll& U( 0)(257)_——4{533212{4 cos’(p[z—H]) X |ALPAL+

qu&z'*’<z>+%Géz'*><z>]
+ S3303 22 sirP(p[z—H])}
X{|AL(&7)|*+]A_(£,7)]%, (45D

X|Az|?AL+(iq)?2 cogp[z—H])

J
X1 S0 21 11(9_§U

48,10 33&ZU 3 O)(Z)}
with boundary conditions

J
J J XA++_ —2psin(p[z— H])[SZSZSllaSU()
_ —11(2,0) — _1(0)
C4A[ azul L_+H C44a§U ' (4.63
+5232333 202) ] 4.9
o e
Cugz Y3 Th ding bound diti
7= +H € corresponding boundary con itions are

:ClZagul )+ 4{S33 51 207 coF(p[z—H])

3+l 1
z==*H

+S3303 2P SIP(P[z—H])} - cp{| AL P +[AZ|%

(4.6b) =[G§)|ALPA +GE AL 2AL ;- .y

J
_ i _ __13¢0)
Integrating Eq.(4.5) and obeying Eq(4.6) leads to 2psin(p[z H])<SZ3 2 11(9§U1

+S, iu<2'°))A } (4.10
32333&2 3 + . .
z==+H

9 d
SUEO=- &—gug"), (4.79

P o g In Egs. (4.9 and (4.10, we have made use of the fact that
(0) i
—yo— _ ot U(O)_ — 1S, q COSz(p[Z HY) the componentJ;™ does not couple to the amplitudés.
gz 3 C1y 9€ { sz and may be chosen to be zero. The functi@i$~)(z),]j
+ sir?(pl z— H ALI24|A_|2L. =1,2, «=1,3 are not specified here.
Swaza 2’ (pL DHIASH AT By multiplying Eq. (4.9) with cosf[z—H]), integrating
(4.7 over z from —H to +H and making use of the boundary
conditions, the following condition for the solvability of the
The third-order part of the displacement field is analo-inhomogeneous problem, Eqg.9) and(4.10, is obtained:
gously decomposed as

J Jd
3 2ia)po{—ivq—]A++pla)2A+
) o ar 1213
u®= > UGNz nexdi(jgx—fwt)], (4.9
jf=-3

~INGJAL 24 N AL AL+ MAL U,

23

whereUGTO=yG~1- 0%

Equating to zero the prefactors of ¢Xjpogx—fwt)] in the (4.19
equations of motion and boundary conditions, one may ob-
tain the functionsU®19(z) as solutions of inhomogeneous The coefficientsN; and N, depend on cubic anharmonic
linear boundary-value problems. These boundary-value prokeoupling coefficientsS,, 5 .5, @,8€{1,3} in a bilinear
lems are singular only for,f =+ 1 andj=¢=0. Inthe case way and linearly on the quartic anharmonic coefficient
€=1, j==*1, we obtain the ordinary differential equations S,; »1 21 21 The coefficientM is explicitly given by
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Cio The coupled modulation equatio$.11) and (4.16 are
S232311 232333 the plate mode analogs of Ed4)—(6) in Ref.[19] that have
11 . . :
been derived for an optical system. After rescaling, they take
412 he simple form

In the boundary-value problem &3, the inhomoge- 5
neity vanishes antl®® remains undetermined at this stage. i(— +

Ci2
_ 2 2
M=q 3212111_0—113212134+p

J
B:+B::(|B:|2+h|B:|2)B:+mB:5U:

The fourth-order fieldi®) may be decomposed into Fou- gt ox
rier components in a way similar to EG.9), (4.17)
4 N P ) 5
W= 3 UHzE Dexdi(ax—ton)]. (413 a2~ S gV mplIB BT (418
=

) ] ) ] with real parameterf, m,c. Stationary or moving solitary
Special attention has to be paid to the equg(gons that have Qutions can be derived in the same way as demonstrated by
be satisfied by the sagittal componentsUsf-°%), lizuka and Kivshar for their equations, namely, with the an-

5 satz

- C44(9_2 U 54’00)(2) *1/2 H
0z B.(x,t)=A"Y()exdi(0,4)—Qt+6p)] (4.19

d

J i & andU(x,t)=u wherel=x—Vt andV is the velocity of
:(012"‘044)&—5 EUSZ’O)(Z)—(pOP—cllﬁ—gz]U(lo) (x,t)=u(?), 4 y

the solitary wave. Making use of the spatial localization of
) the solitary solution, one obtains from Ed.18

- 2 _
+ aZRl(Z)+4{811212g COSZ(p[Z H]) 9 B m[A+(1/A)] f2 45
; a_gu_ Vg (£). (4.20
+S11 232 SIP(p[z—HD}2[|AL [P +]A_|7],

ez gE- " Inserting Eqs(4.19 and(4.20 into Eq.(4.17), one is led to
(4.143  the same ordinary differential equations #y+ 6, andf as
have been solved in Rdf9].

The modulation equation&t.17) and (4.18 can be de-

F?Z (4,00) _ J d (2,0) J . : .
—Cllﬁug (2)=(Cqot 044)0_5 Eul (z)+ER3(z). rived from the Lagrangian density
4149 ¢=iiB* i B, +B* i B_+B* J B,.—B* i B ]
:I —_— T— _ —_— — T — _
The corresponding boundary conditions are TorT ar TogT" Z3
] 1
900 _ J 20 +BtB++BiB—_§(|B+|4+|B—|4)_h|B+|Z|B—|2
Caq—5 U3 =|Caa7;Us" "t Ry :
0z _ 9€ _
; z=+H | lz=+H 5 1 s ) g 12
(4.153 _ 2 PN AT BT
_ _ _ m(|B,|*+|B_]| )a§U+2 &TU 5 agu .
d J
e 7 (800) e 200 (4.21)
_ - Us o _ClZO—’gUl +R3_z=+H-

N Identifying continuous symmetries and using Noether’s theo-
(4.15h . " X
rem, the following four conserved quantities may be derived:
Explicit expressions for the functionR; and R; are not 5
needed here. The compatibility conditions of this boundary- _ T N
value problem are obtained by integrating E414) over the energy E= ¢-1BY (97'B+ B= ﬁrB‘ (9TU dé,
cross section of the plate and using the boundary conditions
(4.15. When doing this for Eq(4.1448, we obtain 9 9
L+iB* _B+((9_7U)

d
— R*
momentumP—f {lB+ ST

—B
d

P c3,\ &2 © d ) ) ¢
Poy 2| Cu™ Frd Uj’=2Mm §[|A+| +]A_|7].

e J
C11 d =z
(.16 . agu)]df’
It is the last term on the right-hand side of E¢.143 that ) i 5 5
requires the presence of the quasistatic zero-ordertigld, the “mass N:f {IB+[*+|B_[*}d¢,
while the second compatibility condition contains’,
which may then be chosen to be zero. and the quantity
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9 linear guided acoustic waves in a plate in contact with a
f ﬁ_rU dé. semi-infinite elastic mediurfFig. 1(b)].
In order to describe long-wavelength modulations of sur-

This fourth conserved quantity is associated with translalcace acoustic waves in a layered structure, we start with the

tional invariance of the plate along thedirection and fol- asymptotic expansio(8.1) of the displacement field, where

lows immediately from Eq(4.18), while the corresponding now

conservation law for the system of modulation equations u@®(x,z,t)=AW(z|q)e' @ Yy c.c. (5.1

studied in Ref[19] is more difficult to derive.

When looking for stationary solutions of the system of

Egs. (4.17) and (4.189, the second time derivative in Eq. The complex amplitudé depends on stretched coordinates

(4.18 vanishes, and the variableé may be eliminated to X, T, ... andwW(z|q)exdi(gqx—wt)] is the displacement

yield the Mills-Trullinger equations field of a linear surface acoustic wave with wave veajor
=(q,0) and frequencyw. The depth profile of a surface

2 2>|B |2} acoustic wave,W(z|q), is chosen such thaw(z|—q)

m m
B:+B+=[<1—?)|B:|2+ h_gz =W*(z|q) and W(0|q) does not depend on the modulus
of g.

(4.22 For the second-order fieldf®), we use the decomposition
However, the time-derivative term in E¢4.18 influences (3.3 with u@ob=op. When using this decomposition, we
the stability properties of the stationary solitary solutions.have assumed that there is no waveguide mode with wave
This becomes evident when Edg.17 and (4.18 are lin-  Vector (21,0) and frequency @. Then,F®? is the solution
earized around a solitary solution leading to a non-Hermitiar?f @ nonsingular linear bouznzdary value problem satisfying
eigenvalue problem. The dominant instability of the solitarythé boundary conditionF®?(z)—~0 as z——c. For
wave solutions of the Mills-Trullinger equatiod.22 is of ~F~(z) we obtain again(3.5. With the requirement
oscillatory character, which is associated with eigenvalue§*?(2)—0 asz——=, F®% s then uniquely determined.
that have a small real park(, the growth rateand a large  Explicitly,
imaginary part K", a frequency[21]. At distances far away
from the solitary wave, the eigenvector is a linear combina-

| =*x—
at  oax

z
tion of almost plane waves with complex frequenky Fgf*o)(z):—J' I op(2")Sg3 uy ce(Z')[D (i)W, (2') ]
—iN" and wave vectors having a small imaginary part, too. -
This may be interpreted as the solitary wave decaying via the X[D(iq)W,(2)]*, (5.2

emission of radiation. In the presence of coupling to the de-

gree of freedomU, radiation is expected to occur via this

channel, too, i.e., via sound waves with wave vedtor wherel,4(z) andSg; ,, ;+(2) are step functions taking their

~\"[c. We note, in addition, that translational instabilities corresponding values in the film and substrate regions.

can occur only in exceptional cases, if at all, since there is no In the same way as in the case of plate modes, the com-

gap in the spectrum of the acoustic ficld patibility condition in the linear inhomogeneous boundary
In the derivation of the modulation equatios1? and  value problem folU®>% requires thaA depends oix*) and

(4.18, we have assumed that there is no resonance of the(*) only via g(l)zx(l)—ng(l), whereV is the group ve-

Brillouin zone center modes and higher harmonics. Thidocity of the linear surface wave with wave numhgrand

means, in particular, that there is no linear plate mode ofhe explicit solution forU?Y) is Eq. (3.6).

sagittal polarization that has frequeney2« and (1) wave The quantityU(?? depends on stretched coordinates only.

vector~ *+2q or (2) wave vector=0. The latter assumption |n order to be able to satisfy the boundary conditions at

means that the frequency of the homogeneous thickness vi=, —, we have to introduce an additional stretched coordi-

bration of the plate is not close tow2 The case of assump- nate Z(M=¢z. The dependence dff*% on the stretched

tion (1) not being satisfied has been discussed in ]  coordinates will emerge at higher orders «of as we shall

for nonlinear acoustic waves propagating in an elastic filmshow below. Only the displacement field in the substrate re-

covering a semi-infinite substrate and earlier in optical congion depends 0", while in the film, terms proportional to

texts[23-26. When assumptior2) is not satisfied, one is positive powers ofz are allowed as has been the case in a

led to the three coupled evolution equations analyzed byree-standing plate.

Mak, Malomed, and Ch{27] with parameteiD =0. (In or- The third-order fielcdu® has form(3.7) with UG™(z) for

der to obtain the second-derivative ter@@£0), an addi- n==+2+3 being solutions of nonsingular linear boundary-

tional stretched coordinate would have to be introduced. value problems, assuming that there is no resonance of the

second and third harmonic with a linear waveguide mode.

V. SURFACE ACOUSTIC ENVELOPE SOLITONS The solvability condition foruGY yields the nonlinear
Schralinger equatiorn(3.13, where nowN=N/(2«) andN
and « are defined in Eq93.11) and (3.12), respectively. In
After having discussed modulations of weakly nonlinearthe latter two expressions, the integrals ozdrave now to
waves in a free-standing elastic plate, we now consider norbe extended from-« to d rather than from—H to H.

A. General case
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We now turn to the quasistatic contributiaf®>® of the

d d
third-order part of the displacement field. It has to satisfy the CQ 5 —=UE00+ [, —— U 00

a3 Bl B a3 B3
differential equation gx) 9z 7=
-c, U@ - 2
383U 553 )\aax(l)|A| (5.6
J . .
=730t {Sa1 4y el DL(I)W,J[D(iq) W, ]* with real coefficients

d
+(Cat g3+ Caz p) FED— A2, (53 Me™ fﬁwdz[swllwlf(z)_cal 32T 5(2)Spa v ¢(2)]

X(l)
X[D,(IQ)W,(2) J[De(iq)W(2)]*. (5.7)

The superscriptS) refers to the substrate. Since E§.6)
follows from the boundary conditions at the surface and in-

subject to the following boundary conditions:

(1) (2,0,0) i
(3,0) (2.0) a12 (2,0,0 terface, the argume'*’ in Uy on the left-hand side of
Cazpalps ot Cas AL, (1){': [AIZ+UE%) Eq. (5.6) has to be set equal to zero.
At fourth order of the expansion parameterthe quasi-
(20,0) static part of the equation of motion for the displacement
+Cuzps aZ(l)UB’ ’ field in the substrate yields for depths much larger than the
z=0_ carrier wavelength:
3.0) g2 2 2
=|Ca3 U5+ 3, +Cprzp1—— (9 o 7 oy 7
383Y 5.3 3P % () Suph T2 Calﬁlax(l)z Ca3ﬁ3az(1)2
2
(2.0 a|24 11(2,0,0 NG ? (2,00)_
X{FETIAIP U )}l . ’ (5.43 (CRptClm)—m=m <Dz Uz "=0. (5.9
=0,

Obviously, Eq.(5.8) are the linear equations of motion in the
substrate involving only stretched coordinates. Equation
(5.6) has to be regarded as boundary conditions for the vari-
z=d  ablesU®%) =123, at the substrate surfa@é?=0. A
_ further boundary condition that has to be imposed is that
0. (5.4b 20.0) ~: ; .
U090 either decays exponentially Z8")— — = or energy is

Ca3paUps +at Cas 1 {F(2 OlA|2+ U @00

X (1)

- radiated into the substrate. Since the amplitude of the carrier
In addition, the three components 0f*% have to be con- wave, A, depends oX® and T® only throughg® =XV

tinUOUS at the interface The quant|t|é§ a—= 1 2 3 are not _V T(l) with V be|ng the group Ve|oc|ty, the solution of

tially as functions oz (5.6) may be written in the form
We now decomposeU®9(z)=U@004+yBolzq(z) Y

+ UGB (z), whered(z) is the Heavyside step function and U0 x(1) z(1) T(1))

UGLE)(z) decays into the substrate exponentially and is de- 5

fined below. The quantitie®)®%) and UG depend on (AR ) <
stretched coordinates only, and = | o eHIKE ]21 b(r)exd Ka(r)Z]1(K),
(5.9
e r :
7Y (@D="Tap(2) I+ | dZ{Sp1 4, 1(Z') where
X[D, (i)W, (2")][D(iq)W(z")]* I(K)=jw deMW|AED)|? exp(—iKED).  (5.10
+[Ca1p3(2') +Cpz pr(2')]
The vectord(r) and coefficientsy(r) depend orV, and the
XF@ENz' ) —| |2] (5.5  sign of K in Eq. (5.9). The coefficientsa(r) either have a
' gxXb positive real part or are purely imaginary. In the latter case,

the acoustic Poynting vector associated with the plane wave

Inserting this into the boundary conditions, we are led to theexfiK (X" —ia(r)ZM—V,T®)]b(r) is directed into the sub-
following solvability conditions: strate. The physical interpretation of these findings is as fol-
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derivation of the corresponding modulation equations for the
case of surface acoustic waves, which are found to exhibit a

specific feature.

In order to avoid secular terms X or T}, a term
U9 has to be added to the right-hand side of &ql). It is
continuous across the interface. In the film, it depends only
on stretched coordinatéé™, T(" n=1,2, ..., and in the
substrate, it also depends on the stretched depth coordinates
Z(™M. The second-order part of the displacement field is of
form (3.3) with the modification that>%)is nonzero only
in the film region, while in the spatial region filled by the
substrate U?%0) depends orz(™ in addition to X" and
TM n=1,2,... . Theguantitiesu®®¥, F?2), andF?9 are
q determined in the same way as before. In particH&? is

given by Eq.(5.2). Inserting Eq.(5.2) into the second-order
boundary conditions, we obtain at the interface

e

frequency

wavevector

FIG. 2. lllustration of the resonance condition of long-
wavelength Rayleigh waves and short-wavelength Love waves be- (S J U049 L U0
longing to the lowest branch. Dispersion curve of Love waves @3 PL (1) TR a3 P3 47(1) P
(thick solid and Rayleigh waves of the substratin solid). z(h=0
v{® ,v{P): velocity of transverse sound waves of the substrate and
film material, respectively. =

Jd

SRS L
z(W)=0

lows: An envelope pulse of a carrier wave with short wave- (5.11)

length 27/q is accompanied by a wave packet consisting of

long-wavelength Fourier components. Depending orand at the surface

whether the group velocity of the carrier wave is smaller or

larger than a limiting valuéthe velocity of transversely po-

larized bulk waves in the case of isotropic substhatéss

wave packet is either localized at the surface or corresponds

to radiation into the bulk of the substrate. As this long- = =

wavelength component appears at second order of the expaffllich implies

sion parameteg in our asymptotic expansion of the dis-

placement field, it does not enter the evolution equation for ULy U (Lo -0

the envelope of the carrier wave, and the latter is the nonlin- gx@ A @SB3 7)) P "

ear Schrdinger equation, as has been found in earlier works 20 (5.13

(for a review see Ref.2)).

When V, approaches the phase velocity of the Ray-  and
leigh waves propagating on the uncoated substiaig,)|
diverge and the boundary-value problem, E¢s.8) and
(5.6), becomes singular. We note that the ca&g=vrg is
rather special, but can occur even in a highly dispersive
zgggﬁgchsﬁg c\:\;]?(\:/ egfu;ﬂi vggrr]rcl);t Ivr\}gzglg gfriéii?]rc]:;ml::%? tet)t]_/gt depths|z|> 1/q the equations of motion at third order of

) lead to
ample, such a resonance occurs for a certain valugdain
the lowest branch of the Love waves, if substrate and film are
both isotropic materials and the velocity of transverse bulk
waves in the film material is smaller than that of the Ray-
leigh waves propagating at the surface of the uncoated sub-
strate(Fig. 2). For the higher-order Love wave branches, this
resonance occurs if the Rayleigh wave velocity of the sub-
strate is smaller than the velocity of transverse bulk waves of
the film material. Nonlinear interactions of long waves anquuation(S_j_S) together with Eq(5.13 are the equations of
short waves with the group velocity of the short wave beingmotion and boundary conditions for a displacement field in a
equal to the phase velocity of the long wave has been dissomogeneous substrate with uncoated stress-free surface.
cussed from a general point of view and for different ex-Their general solution localized at the surface is a superpo-
amples by Benney10,11. We shall now give a detailed sition of (generalizegl Rayleigh waves:

d
(F) (1L.O) 4 =(F) (2,0,1)
Ca3 Bl(?x(l)UB +Ca3 B3Uﬁ 1 ) (512

z(L)=0

J
2,0,1)_ F F 1,0
U)S >_—rggc<ﬁ;ﬂmug ), (5.19

2 2 52
(S —c® —ce® -
aﬁp 07T(1)2 Cal Bl 5X(1)2 Ca3 B3 0_'2(1)2

2

Jd
—(c® S v 7 o
(CRpat CRp) oy =y VF =0, (619
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dK Combining the boundary conditior(.4) with Egs. (5.18),
0= f Eexp(iKg(l))W(Z(WK) making use of Eqs(5.14) and(5.19, the following relation
is obtained, which plays the role of a boundary condition for
X C(K;T®@ x2) 72 . (5.16 the fourth-order equation of motion:

Here, W(Z(W|K) is the depth profile of a linear Rayleigh < I ao 9 oo
wave with two-dimensional wave vectoK (0) and the am- cp WU%’ )+ WU%’ o
plitudes C(K) depend on stretched coordinates J J
T, XM 70 with n=2. P

The third-order contribution to the displacement field may +c9 B3[ SUGO+ — U(zoO)”
again be decomposed as®=33_,{UC"(z)exdni(gx 9z gz
—wt)]+c.c+UCY(2). In addition toz, the functiondJG",
n=0,1,2,3, depend on the stretched coordindt&d, x(™,
m=1,2,...,and, in the substrate, also @™. In the spa-
tial region filled by the film material, we decompose

z(M=0
2

J
F F F)~(F 1,0 F
d (CH) 4 —CH) I )51) — Y )10 (F)

2
UGz TM XD); | )=y T xM): ) uto

aTM?2
+zUGOL T XMy
120802 T XD In the absence 08*%% and A, Eq. (5.20 is easily recog-
nized as the well-known effective boundary conditions from
+UBOE)(z). (5.17)  Which the influence of the film on the dispersion relation of
the Rayleigh waves can be calculated to leading order in the
In the substrate regiorl)®9=U@0oYTM) xM) 7M. )  ratio of film thickness and wavelengf9,30. This bound-
+UBOE) (), j.e., UBO0) depends on the stretched depth co-ary condition together with the equation of motion at fourth
ordinateszZ(™. The quantitydU®°F)(z)/9z is given by Eq.  order ofe will provide an equation for the evolution of the
(5.5). UGYB)(2) is uniquely determined by requiring that it amplitudesC(K) of the long-wavelength Rayleigh waves. At
decays exponentially for— —o and is continuous at the depths|z|>1/q, the fourth-order equation of motion yields
interface.
We now examine the quasistatic part of the boundary con- { RE 92 . 92 © 92
ap

+A
z(M)=0

2

ditions at third order o, which is similar to Eq(5.4) but gTL2 —Caip X (D)2 —Cazps 9z1)2
contains some additional terms. On the left-hand side of Eq.

(5.4 (the boundary condition at the interfaceve have to © 52 (200)
add —(Cu3 Bl al 83) XD 571
c ULy e UL 9 9
a3 pl B a3 B3 B () P ol )
(5.18a X
; ; _ce 7 ©)]
and on the right-hand side of E¢p.4a, Coaps 270370 (Cazprt Cot pa)
J 2 2
Fm 1o 1 J J
Casp Ve (5.18b X< + ui9=0. (5.2
z=0, 2\ gXM ez~ 57 5x(2)

To the left-hand side of Eq5.4b (the boundary condition at We are looking for solutions)?°9 that depend ox1), T(1)
the surfacgthe following terms have to be added: via the combinations®=x® -V, T, Consequently, we
may represent)?%9 in the substrate region as a Fourier
integral of the form

J
(F) (1,0 (2 0,1)

dK )
. o . . . U@00= J SoexpiKEM)gzMIK). (522
From the equation of motion in the film region we obtain 2

e J For U0 and|A|?, we use the Fourier representatigBsl0)
CR pUGA=pP ——u(0-cl) ) ——uto and(5.16.
JTL)2 gx@)2 L
We now apply the projection meth¢a8] to the system of
equations of motior{5.21) and boundary condition&.20):
_(CEQWLC(Fl)BS)LU%z,o,n_ (5.19  We multiply Eq. (5.2) by W* (ZW|K)exp(iK &), sum
X overa, and integrate ovef® andZ). Integrating twice by
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parts and making use of E¢6.20 and the boundary condi-
tions satisfied byu*? at Z(1)=0, one may eliminate the
field UZ%9 and obtain the following result:

d

9 ax (@)

\Y

J
i{Kngr(K) +0&Z(2)} C(K)

aT(Z)Jr
=—dMK?C(K)—W*(0|K)\,iKI(K).  (5.23

The coefficientky is an integral similar to Eq.3.12),
0
KR=2p(S)UR|K|f W (ZIK)W,(Z|K) dZ. (5.24

The coefficientV,
M =W (0] K){8,5pOV2—CJ 5

+CY ,aTOICT 411 W,(0[K), (5.25

w

does not depend oKk and enters the dispersion relation be-

tween frequency and wave vectoK of the linear Rayleigh

PHYSICAL REVIEW E 67, 066603 (2003

is the Hilbert transformpP indicating the Cauchy principle
value. As has become evident from the above derivation, the
appearance of the Hilbert transform is due to the peculiar
depth structure of the long-wavelength Rayleigh wave.

The quasistatic long-wavelength field®9 enters the
contribution to the third-order equation of motion and
boundary conditions through the derivativgsiU(%/
aXM],a)_o and[ dUE 921 5)_ . Eliminating the latter
in favor of the former by using Ed5.13 and proceeding in
the usual way, we finally obtain

1Pw

9
[' T 2 997 (9gM)2

=0.

A—(N/k)|A|?2A—(1/k)AU,

(5.3)

The coefficientd\ and « are again defined in Eg€3.11) and
(3.12, where the integrals have to be extended frerw
to d.

The coupled system of Eq$5.31) and (5.29 are the
modulation equations for a surface acoustic carrier wave

waves of the coated substrate for wavelengths much longevith group velocity equal to that of long-wavelength Ray-

than the film thickness,

(,L)(K):URK

Md
1——|K|+0([Kd]2)}. (5.26
URKR

The coefficiento in front of the derivative with respect to

z(@,
%] ats
UZZJ% 3 53 Im

+cgsgﬁﬂm[w;(z(lnK)inﬁ(z<1>|K)]]dz, (5.27)

Jd
(1) - (1)
W (ZJK) — s Wi(Z]K)

vanishes, since the integrand is proportional to the three-

leigh waves. Obviously, this system of equations has solitary
wave solutions corresponding to envelope pulses of >sech

form that travel with the group velocity; and haveU,

=0. Whether there are pulse solutions traveling with a dif-

ferent velocity and whether these are stable remains to be
clarified in subsequent work.

To our knowledge, Maugin, Hadouaj, and Malon{&d]
were the first to derive coupled evolution equations for long
and short waves in the context of surface acoustic waves.
They considered shear-horizontal carrier waves and found
their modulations governed by the Zakharov equations,
which differ from the modulation equation&.29 and

(5.3D).

B. Thin-film/small-mismatch limit for Rayleigh waves

component of the time-averaged energy flux associated with |, a frequency regime where the film thickness is smaller

a Rayleigh wave with wave vectoK(0). Defining the quan-
tity
Uo(£W;T@, 62y

dK
=fEiK)\aWa(0|K)C(K;T(Z),X(Z),O; )

X exp(iK ¢y, (5.28

multiplying Eq. (5.23 by |K|\ ,W,(0|K)expK&Y) and in-
tegrating oveK yields
@ _
_ e [Araz2
+dMa§(l)2H[Uo] Fag(l)zH[A],
(5.29

whereF = |\ ,W,(0|K)|?, which is independent of.

R1® Yo

. P U
H[U](§)=;f g,(—f;dg’ (5.30

than the typical wavelengths, nonlinear evolution of the Ray-
leigh waves is governed by an evolution equation of the
following form:

!

'aBk =k
IE(!T)_

27

ij(k’/k)B(k’,T)B(k—k’,T)
0

+2f:(k/k/)|:*(k/k,)8(k,,T)

!

xB*(k'—k,T)% +D(K)B(k,7)  (5.32

with k>0 (see, for example, Reff32,7] and corresponding
earlier work[33—-38) andB(k) is the Fourier transform of a
displacement gradient component at the surface, @sg:,

o ) dk
Uz 4(x,0t)= fo B(k,m)exdik(x—vgt)] py= +c.c.
(5.33
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and 7 is a stretched time coordinate. Normallip (k) B2k, , TM: )

= agk? with coefficientag determined by the linear acoustic

mismatch between film and substrate. In special cases of _ Fo jB(“)(k’ T )
acoustic mismatchp(k)=k®. If the second-order elastic B0’ CHR

moduli and/or the mass density are varying continuously

near the surface with only small relative deviations from

their bulk values, Eq(5.32 is also applicable. The function

D(k) may then have a more complicated dependencé& on

with D(k)*k? ask—0. At third ordgr of », the following system of coupled equa-
The continuous and bounded functindepends on the tions is obtained:

second-order and third-order elastic moduli of the substrate

only. [In deriving Eq.(5.32), the nonlinearity of the film iiﬁ(k T2

material has been neglectgth terms of the real-space vari- = 572" '

able uz,, the evolution equatior(5.32 would exhibit a

dkK,
X Bk, —k}, T . .)2—771. (5.38

highly nonlocal nonlinearity. Equatio(6.32 may be com- 75t (2 2F3 ~ o
pared to the KdV equation, which takes on the form =3agqkiA(ky; T®) — 3a0q A* (ki —ky; T)
~ ~ dki dkj
9 k dk’ XAKL TO)VAK,— K] T@)— —
i—B(k,7)=kFo| | B(k',7)B(k—k’',7) =— 2@ 27
oT 0 2
~ ~ dk;
- dk’ +2qF, f Ak, — K, T@)B@O Kk T, T@) =
+2f B(k',T)Es*(k’—k,T)E 2m
“ (5.39
+ agk®B(K, 7) (5.39
[ i % +Vgky BRO(k,, T, T(2)
with real constant after Fourier-transform with respect to al
the spatial coordinate. dk!
n orde_r to highlight the differgnce between the quula— :ZleoJ’ A* (k] TOYA(K, + kl;T(Z))—l,
tion equations for the KdV equatidis.34) and the Rayleigh 27
wave evolution equatiof6.32, we sketch the derivation of (5.40

the modulation equations for a carrier wave with wave num-

ber g in the weakly nonlinear regime of E¢5.34. We ex-  where

pand the Fourier amplitudd®(k) in powers of a expansion _

parametery (0< 5<1), BMO(k,, T, T@) =Bk, T, T(2))

Xexp(iV gk, TO+iV gk, T?).

B(k)= 7BM(k)+ 7?B@(k)+0O( %), 5.3
(k)= 7B (k) + 7 (k) (77 (539 Transforming these two equations back into real space,

and introduce further stretched coordinat@§™ = »Mr.
“Slow” variations in real space are associated with small
wave number«™ = ™k, [39,13, wherek,,/q is of order
O(7°%). Consequently, we write

A(ED, T@) = J ‘;—':”A(kl;ﬂz))exp(iklé(”), (5.41

U6, T0;10) = | B0, T, T2 expiky V),

o (5.42
— s 1). 2).
B(m)(k’T)_n:Zx B (ky, T ko, T®; ) one gets the familiar set of coupled modulation equations
[13]:
Xexp—inwg7) (5.36
0=i i A+3 ” A+ g|A|2A 2qF,AU
=l—% ald—717 —2QFoAlo,

and definawy= aoq®, V4=3a,q?. Collecting terms of equal gT® ggM2 3aod

order in the expansion parametgr we find (5.43
J B Jd 5

Bk, , T .. )=A(ky;T®; .. ) ﬁuo_ _2F0&§(1)|A| : (5.44

—j 1) _j (2)
xXexp(—iVgk, T IVgkaT), Going now through the same arguments for the evolution
(5.39 equation(5.32) instead of the KdV equation, we find that due
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to factork/k” in the second nonlinear term in E.32), the

PHYSICAL REVIEW E 67, 066603 (2003

On the right-hand side of E@5.47), the following term has

nonlinearity in the quasistatic part of the evolution equationto be added:

enters only at fourth order of the expansion parameter

Consequently, one obtains instead of E§40),

BROk,, T, T@)=0 (5.49

o d
|Im+vgk1

and may seB(*9=0. HereV, is the deviation of the group

.dk! ~
+2q fo SAF(0)BROK] T@)A(ky ki TP)

+F*(0)BEO (ki ; T@)Ak +ki; TE)} (5.50

velocity associated with the carrier wave from the Rayleigh

wave velocityvg. At the next order ofp,

J ~
- (3.0) 1.7
{|8T(1)+vgkl BEO(k,, TW;T(2))
k? - ~ dk;
=2EF*(O)J A*(kl;T<2>)A(kl+kl;T<2))ﬁ.
(5.46

As long asV,#0, Eq.(5.46 may be solved foB with-
out involving secular terms i®). However,BG? does not
enter the third-order equation corresponding to Eq39),
which now takes the form

J ~ 1[9°D(Kk) _
; Ty T 2 .7(2)
|(9T(2)A(k1,T ) 2[—2—% L(qklA(kl,T ),
2|F(1/2)|? - -
[ L N r.1(2) n.1(2)
Stz 2ot | A OGTORKGTE)
dk; dk!
Ak — K" -T@y_t 1
XAk =k T o— o (5.47

Equations(5.49 and (5.47) with the additional term5.50
lead to the set of coupled modulation equatigd®9 and
(5.31), which are thus obtained in an independent way in the
limit of a thin film or small acoustic mismatch between sub-
strate and film.

VI. CONCLUSION

The goal of this paper was to derive envelope equations
that govern gradual modulations of weakly nonlinear waves
in acoustic waveguides. Particular attention has been paid to
the interaction of a short-wavelength carrier wave with long-
wavelength components of the displacement field. Three ex-
ample systems have been treated in detdil:a homoge-
neous elastic plat€2) an elastic plate with certain material
properties such as its mass density varying periodically along
the direction of wave propagation, ai(8) surface acoustic
waves on a substrate coated by a film consisting of a material
different from that of the substrate. In cade, the nonlinear
Schralinger equation for the complex amplitude of the car-
rier wave is nonlinearly coupled to the wave equation for the
real amplitude of the quasilongitudinal plate mode. This sys-

After Fourier transform, this becomes the nonlineartem of modulation equationé3.8) and (3.9) is the well-

Schralinger equatiorn(3.13 with o replaced byD and

2|F(1/2)|?
2D(q)—D(2q) "

It was shown in Ref[2] that the expression fd{/« in Eq.

N= (5.48

known Zakharov systef®,12,31 (or an extended version of

it in the general caseln case(2), we have derived a system

of three coupled evolution equatio4.17) and (4.18 that

are extensions of the well-known gap soliton equatidr&

and the acoustic analogs of corresponding equations derived

(5.3 derived in the previous subsection converges to Eqrecently by lizuka and Kivshafl9] for an optical system.

(5.48 in the limit of small dispersion.

For weakly nonlinear surface acoustic wavsgstem 3, we

The Specia| Casé/gzo Corresponds to the equa”ty of have shown that their modulations are normally governed by
group velocity of the carrier wave and phase velocity of thea single nonlinear Schdinger equation. However, there is a
long-wavelength Rayleigh waves. In order to avoid secularesonant long-wave short-wave interaction, when the group
terms that would arise in Ed5.46), B9 is again needed, velocity of the carrier wave is equal to the phase velocity of

and one obtains as a compatibility condition fqe>0:

J
IT

0=—i B0k, ; T()

1[5?D(k) 5
- @0 k. -T2
+2{—2—ﬁk Lokls (ky;T@)

* ki [ dki FTONE* (L 1)
+2F (O)E zA(k T )A (kl—kl,T )

(5.49

long-wavelength Rayleigh waves in the absence of the film.
For this resonant situation, the coupled modulation equations
(5.29 and (5.31) have been derived. These involve Hilbert
transforms that typically occur in the context of surface
acoustic waves.
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