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Envelope solitons of acoustic plate modes and surface waves
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The problem of the existence of evelope solitons in elastic plates and at solid surfaces covered by an elastic
film is revisited with special attention paid to nonlinear long-wave short-wave interactions. Using asymptotic
expansions and multiple scales, conditions for the existence of envelope solitons are established and it is shown
how their parameters can be expressed in terms of the elastic moduli and mass densities of the materials
involved. In addition to homogeneous plates, weak periodic modulation of the plate’s material parameters are
also considered. In the case of wave propagation in an elastic plate, modulations of weakly nonlinear carrier
waves are governed by a coupled system of partial differential equations consisting of evolution equations for
the complex amplitude of the carrier wave~the nonlinear Schro¨dinger equation for envelope solitons and the
Mills-Trullinger equations for gap solitons!, and the wave equation for long-wavelength acoustic plate modes.
In contrast to this situation, envelope solitons of surface acoustic waves in a layered structure are normally
described by the nonlinear Schro¨dinger equation alone. However, at higher orders of the carrier wave ampli-
tude, the envelope soliton is found to be accompanied by a quasistatic long-wavelength strain field, which may
be localized at the surface with penetration depth into the substrate of the order of the inverse amplitude or
which may radiate energy into the bulk. A new set of modulation equations is derived for the resonant case of
the carrier wave’s group velocity being equal to the phase velocity of long-wavelength Rayleigh waves of the
uncoated substrate.

DOI: 10.1103/PhysRevE.67.066603 PACS number~s!: 43.25.1y, 05.45.Yv, 46.40.Cd
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I. INTRODUCTION

Modulational instability of plane carrier waves, envelo
solitons, and gap solitons have been discussed in var
areas of physics, especially in nonlinear optics, where t
have been generated and investigated in experiments. T
phenomena have also been envisaged for guided aco
waves in elastic plates and at solid surfaces~@1#, for further
references on surface acoustic envelope solitons see
@2#!, but have not yet been observed in experiments to
knowledge, while several experiments have been carried
on wave form evolution of an initially sinusoidal Rayleig
wave in the presence of dispersion@3–5# and recently on the
evolution of short intense pulses on coated substrates@6,7#.
An important feature of nonlinear acoustics in comparison
nonlinear optics is the unavoidable presence of second-o
nonlinearity.~There is no acoustic analog of an optical Ke
medium.! In systems with third-order nonlinearity wit
second-order nonlinearity being absent, ‘‘slow’’ lon
wavelength modulations of a sinusoidal carrier wave and
formation of envelope solitons are described by the nonlin
Schrödinger equation~NLS!. The parameters occuring in th
NLS follow from a nonlinear dispersion relation for weak
nonlinear sinusoidal waves@8#.

However, in the presence of second-order nonlinearit
nonlinear dispersion relation for plane waves is not alw
sufficient for the description of modulations of a weakly no
linear carrier wave. Here, the carrier wave is coupled to q
sistatic components of the wave field. It has been shown
nonlinear waves in various systems that the modula
equations are a NLS coupled to the wave equation or ev
tion equation for a long-wavelength low-frequency degree
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freedom@9–14#. In the case of nonlinear waves described
the Benjamin-Ono equation, this additional degree of fr
dom has dramatic consequences as it gives rise to a ca
lation of the dominant nonlinearity in the NLS@13#.

In systems that have an additional periodic spatial va
tion of its properties, gaps may open up in the frequen
spectrum of wave solutions of the corresponding lineariz
systems. In the presence of third-order nonlinearity, gap s
tons may form that are described by a set of two coup
nonlinear evolution equations for the complex amplitudes
forward and backward propagating waves with wave vect
at the edge of the first Brillouin zone@17,18#. We shall call
these evolution equations the Mills-Trullinger~MT! equa-
tions. It has recently been pointed out by Iizuka and Kivsh
@19# that in the presence of second-order nonlinearity a
nonresonant coupling between the carrier wave and its
ond harmonic, an extra quasistatic degree of freedom ha
be accounted for explicitly, and the MT-equations a
coupled to the wave equation for this additional degree
freedom. Iizuka and Kivshar have derived their modulati
equations using an effectively one-dimensional treatmen
the propagation of light in a medium with periodically var
ing dielectric constant. In Sec. IV, we shall derive the cor
sponding modulation equations for elastic plate modes.

The modulation equations for weakly nonlinear waves
usually derived by carrying out an asymptotic expansion
the wave field using multiple scales. The complex amplitu
of the carrier wave is usually chosen to be of first order in
expansion parameter«. In the following sections, we shal
show that the quasistatic parts of the displacement field
quired by the second-order nonlinearity enter the expans
at differing orders of«. For gap solitons in elastic plates
©2003 The American Physical Society03-1
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they are of orderO(«0), for envelope solitons in elasti
plates, they are of orderO(«1), and for envelope solitons o
surface acoustic waves, they come into play at orderO(«2).
This latter fact implies that they do not influence the sp
tiotemporal evolution of the complex amplitude of the carr
wave at leading order, and this evolution is still governed
the nonlinear Schro¨dinger equation.

However, there is a special case of resonant long-w
short-wave coupling of guided acoustic waves propagatin
the surface of a coated elastic medium, namely, the gr
velocity associated with a short-wavelength guided car
wave being equal to the velocity of the Rayleigh waves w
wavelength very long such that the film only constitutes
small perturbation for their propagation characteristics.
the last section, we shall discuss this case in some detail
derive the corresponding modulation equations.

II. BASIC EQUATIONS

The propagation of acoustic waves is considered in ela
plates@Fig. 1~a!# and along the surface of a semi-infinte ela
tic medium covered by a film made of a material differe
from the substrate@Fig. 1~b!#. The coordinate system is cho
sen such that the z axis is normal to the surfaces. The el
plate fills the spatial region2H,z,H, the substrate fills
the halfspacez,0, and the coating film the region 0,z
,d. The displacement fieldu is assumed to depend on tim
t and on the spatial coordinatesx andz, but to be independen

FIG. 1. Geometries: free-standing elastic plate~a!, homoge-
neous elastic substrate covered by an elastic film~b!.
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of y. In the elastic media, it has to satisfy the equation
motion

r
]2

]t2 ua5Tab,b . ~2.1!

Here and in the following, Cartesian indices are denoted
lower-case Greek letters, and for derivatives with respec
the Cartesian coordinatexb we use the short-hand notatio
,b. Also, we invoke the summation convention for repea
Cartesian indices.r is the mass density of the elastic m
dium, and the Kirchhoff-Piola stress tensor (Tab) may be
expanded in powers of displacement gradientsua,b ,

Tab5Cab mnum,n1 1
2 Sab mn zjum,nuz,j

1 1
6 Sab mn zj lsum,nuz,jul,s1O~ua,b

4 !. ~2.2!

The elements of the sixth-rank tensor (Sab mn zj) consist of
linear combinations of second-order and third-order ela
moduli, while the elements of the eighth-rank tens
(Sab mn zj ls) are linear combinations of second-order, thir
order and fourth-order elastic moduli@16#. At a free surface
~at z56H in the case of a plate and atz5d in the second
system under consideration!, the boundary condition

Ta350 ~2.3!

for a51,2,3 has to be satisfied. At the interface between fi
and substrate atz50 @Fig. 1~b!#, there are the two boundar
conditions

Ta3uz502
5Ta3uz501

, ~2.4!

uauz502
5uauz501

. ~2.5!

When describing surface waves, we also require that the
placement field decays to zero forz→2`. At higher orders
of the expansion parameter« in an asymptotic expansion o
the displacement field, we may soften this latter requirem
replacing it by Sommerfeld radiation conditions.

III. ENVELOPE SOLITONS OF PLATE MODES

To derive modulations of weakly nonlinear acous
waves in an elastic plate, we follow usual practice and w
the displacement field as an asymptotic expansion in pow
of an expansion parameter 0,«!1,

u~x,z,t !5«u(1)~x,z,t;X(1),T(1); . . . !

1«2u(2)~x,z,t;X(1),T(1); . . . !1O~«3!

~3.1!

with stretched coordinatesX(n)5«nx andT(n)5«nt. We take
the first-order field to be of the form

u(1)~x,z,t;X(1),T(1); . . . !

5$A~X(1),T(1); . . . !W~z!ei (qx2vt)1c.c.%

1U(1,0)~X(1),T(1); . . . !, ~3.2!
3-2
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consistent with the equation of motion and boundary con
tions at first order of«. Here,W(z) is the modal field of a
linear plate mode with wave numberq and frequencyv.
This plate mode is the carrier wave and its modulations w
be studied in the following. The quasistatic long-wavelen
field contribution U(1,0) does not appear in the first-orde
terms of the equations of motion and boundary conditio
but will be indispensible later to satisfy compatibility cond
tions at higher order.

The second-order field in Eq.~3.2! is conveniently de-
composed as follows:

u(2)5$A2~X(1),T(1); . . . !F(2,2)~z!e2i (qx2vt)1c.c.%

1$U(2,1)~z;X(1),T(1); . . . !ei (qx2vt)1c.c.%

1uA~X(1),T(1); . . . !u2F(2,0)~z!

1U(2,0,0)~X(1),T(1); . . . !1U(2,0,1)~X(1),T(1); . . . !z.

~3.3!

When inserting Eq.~3.3! into the equation of motion and th
boundary conditions at the two surfaces of the infinite pla
the following explicit solutions are obtained when maki
use of the linear independence of the factors exp@ni(qx
2vt)# for n50,61,62:

Ua
(2,0,1)52GagCg3b1

]

]X(1)
Ub

(1,0) , ~3.4!

where (Gab) is the matrix inverse of the 333-matrix
(Ca3 b3).

Fa,3
(2,0)52GabSb3 mn zj@Dn~ iq !Wm#@Dj~ iq !Wz#* ,

~3.5!

and we have defined the operatorDa( iq)5da1iq
1da3]/]z. A compatibility condition requires thatA de-
pends on the stretched coordinatesX(1) and T(1) only via
j (1)5X(1)2VgT(1), whereVg5]v/]q is the group velocity.
~For simplicity, we assume here that the symmetry of
propagation geometry is such that the vector of the gr
velocity is pointing into the same direction as the wave v
tor of the carrier wave.! One then finds

Ua
(2,1)52 i

]

]j (1)
A

]

]q
Wa ~3.6!

apart from a term that may be absorbed inu(1).
If 2v is not close to the frequency of a plate mode w

wave number 2q, the inhomogeneous linear boundary val
problem for F(2,2) has a unique solution that we shall n
determine here explicitly.

At order O(«3), we may decompose

u(3)5 (
n51

3

$U(3,n)~z;j (1),T(1); . . . !eni(qx2vt)1c.c.%

1U(3,0)~X(1),T(1); . . . !. ~3.7!
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Inserting this into the equation of motion and boundary co
ditions up to third order in« and making again use of th
linear independence of the exponential factors exp@ni(qx
2vt)#, this time forn50,61,62,63, four inhomogeneous
linear boundary value problems are obtained~for n
50,1,2,3). If there is no resonance with a plate mode at
third harmonic frequency and wave number, only two
these boundary value problems are singular, namely, that
responding ton50 andn51 and require solvability condi-
tions. These two solvability conditions are the desired mo
lation equations and can be brought into the following for

kH i
]

]T(2)
1

1

2

]2v

]q2

]2

]j (1)2J A2NuAu2A2MaA
]

]X(1)
Ua

(1,0)

50, ~3.8!

2HH rdab

]2

]T(1)2
2@Ca1 b12Ca1 m3GmnCn3 b1#

3
]2

]X(1)2J Ub
(1,0)5Ma

]

]j (1)
uAu2. ~3.9!

In Eqs. ~3.8! and ~3.9!, we have introduced the real coeffi
cients

Ma5$Sa1 mn zj2Ca1 s3GslSl3 mn zj%

3E
2H

H

@Dn~ iq !Wm~z!#@Dj~ iq !Wz~z!#* dz,

~3.10!

N5Sab mn zjE
2H

H

@Dn~ iq !Wm~z!#* $@Dj~ iq !Wz~z!#*

3@Db~2iq !Fa
(2,2)~z!#1@Dj~ iq !Wz~z!#

3@Db~0!Fa
(2,0)~z!#%dz1

1

2
Sab mn zj sl

3E
2H

H

@Dn~ iq !Wm~z!#* @Dj~ iq !Wz~z!#*

3@Db~ iq !Wa~z!#@Dl~ iq !Ws~z!#dz, ~3.11!

k52vE
2H

H

rWa* ~z!Wa~z!dz. ~3.12!

A strong simplification is achieved if the medium has cub
symmetry and the axes of the coordinate system are a
the cubic axes. In this case, we may classify the carrier w
as sagittal or shear horizontal. In the latter case, modes
responding to the lowest branch of the dispersion relat
have to be excluded as this branch is nondispersive. The
nonzero component of the vectorM is M1 and, conse-
quently, the carrier wave is only coupled toU1

(1,0) , i.e., a
long-wavelength longitudinal plate mode. This applies
both sagittal and shear-horizontal carrier waves. In terms
3-3
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the variablesA and ]U1
(1,0)/]X(1), Eqs. ~3.8! and ~3.9! be-

come the Zakharov equations@12#.
Letting nowU1

(1,0) depend onX(1) andT(1) via j (1) like A,
one may eliminate the variableU1

(1,0) from the modulation
equations~3.8! and ~3.9! by integrating Eq.~3.9! once and
inserting the result for]U1

(1,0)/]j (1) into Eq. ~3.8! to obtain
the NLS

H i
]

]T(2)
1

1

2

]2v

]q2

]2

~]j (1)!2J A2N̄uAu2A50 ~3.13!

with effective nonlinear coupling coefficient

N̄5
1

k H N1
M1

2

2Hr~Vg
22CL

2!J , ~3.14!

whereCL5A(c11
2 2c12

2 )/(c11r) is the phase velocity of the
longitudinal plate mode. The second term in the cu
bracket of Eq.~3.14! has been missing in Eq.~3.4! of Ref.
@15#. Depending on the slopeVg of the plate mode dispersio
curves, it can have either sign and influence the existe
criterion ~Lighthill criterion! for envelope solitons.

The case of a resonance at the second harmonic frequ
has already been discussed in Refs.@15,20#. If there is a
resonance at the third harmonic, i.e., if there is a plate m
having frequency 3v and wave number 3q, the complex
amplitudeB of this waveguide mode has to be taken as
extra independent degree of freedom. SinceB may be chosen
to be of second order in«, the modulation equations~3.8!
and ~3.9! will not be affected.

IV. GAP SOLITONS OF PLATE MODES

We now consider periodic variations of the material pro
erties of the plate. To keep the following derivations
simple as possible, we shall assume that it is only the m
density of the plate that varies,r(x)5r012r̄1 cos(2qx). A
generalization to periodic variations of the elastic moduli
periodic corrugation of the plate’s surfaces is straightf
ward.

The periodic variation of the density introduces frequen
gaps in the dispersion relation of linear plate modes, and
may expect that nonlinearity leads to spatially localized
citations having frequencies in these gaps in the same wa
have been found long ago in the field of nonlinear opt
@17,18#.

To have the effects of the periodic variation of the sa
order as those of the nonlinearity, we use the scalingr̄1
5«2r1. Furthermore, we introduce stretched coordinatej
5«2x andt5«2t. The displacement field is then written a
an asymptotic expansion of form~3.1! with, however, an
additional term of orderO(«0),U(0), which only depends on
stretched coordinates. The first-order term in this expans
is chosen as a superposition of two counterpropagating lin
plate modes with wave vectors at the edges of the first B
louin zone introduced by the periodic density variation,
06660
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u(1)~x,z,t;j,t!5A1~j,t!ei (qx2vt)W~z!

1A2~j,t!ei (2qx2vt)W* ~z!1c.c.

~4.1!

The second-order term in the asymptotic expansion may
decomposed as follows:

u(2)~x,z,t;j,t!5$F(2,21)~z!A1
2 ~j,t!e2i (qx2vt)

1F(2,22)~z!A2
2 ~j,t!e2i (2qx2vt)

1F(2,20)~z!A1~j,t!A2~j,t!e22ivt

1F(2,01)~z!A1~j,t!A2* ~j,t!e2iqx1c.c.%

1U(2,0)~z;j,t!. ~4.2!

To simplify the derivations, we now consider the spec
case of an elastic medium of cubic symmetry with the cu
axes along the axes of the coordinate system. Furtherm
the first-order displacement fieldu(1) is chosen to have shea
horizontal polarization. This means thatW has the simple
form Wa(z)5da22 cos(p@z2H#) with p being a positive in-
teger multiple ofp/(2H) and consequentlyr0v25c44(q

2

1p2). Generalization to arbitrary symmetry and polarizati
is straightforward.

The second-order fieldu(2) is of sagittal polarization. The
functionsF1

(2,j s) and F3
(2,j s) , j 50,2, s52,0,1, are solu-

tions of the ordinary differential equations

Fr0V j s
2 2c11Qj s

2 1c44

]2

]z2GF1
(2,j s)~z!1~c121c44!iQ j s

3
]

]z
F3

(2,j s)~z!5I 1
( j s)~z!, ~4.3a!

Fr0V j s
2 2c44Qj s

2 1c11

]2

]z2GF3
(2,j s)~z!1~c121c44!iQ j s

3
]

]z
F1

(2,j s)~z!5I 3
( j s)~z!, ~4.3b!

whereV2s52v, V0s50, Q26562q, Q2050. @The case
( j s)5(0,0) does not occur.# The inhomogeneities are linea
combinations of cos2(p@z2H#), sin2(p@z2H#), sin(p@z
2H#)cos(p@z2H#) involving the coupling coefficients
S11 21 215S33 23 235c1661c11, S11 23 235S33 21 215c1441c12,
S31 21 235S13 21 235c4561c44.

At z56H, the functionsF1
(2,j s) and F3

(2,j s) have to sat-
isfy the boundary conditions

c44F ]

]z
F1

(2,j s)1 iQ j sF3
(2,j s)G

z56H

50, ~4.4a!

Fc11

]

]z
F3

(2,j s)1c12iQ j sF1
(2,j s)G

z56H

5J3
( j s) , ~4.4b!

whereJ3
( j s) are constants. Apart from special resonant sit

tions, which can be avoided by choosingq appropriately, the
3-4
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four boundary-value problems are nonsingular and may
solved in a straightforward way.

The functionsU1
(2,0)(z;j,t), U3

(2,0)(z;j,t) have to satisfy

c44

]2

]z2 U1
(2,0)~z;j,t!50, ~4.5a!

c11

]2

]z2 U3
(2,0)~z;j,t!52

]

]z
4$S33 21 21q

2 cos2~p@z2H# !

1S33 23 23p
2 sin2~p@z2H# !%

3$uA1~j,t!u21uA2~j,t!u2%, ~4.5b!

with boundary conditions

2c44F ]

]z
U1

(2,0)G
z56H

5c44

]

]j
U3

(0) , ~4.6a!

F2c11

]

]z
U3

(2,0)G
z56H

5c12

]

]j
U1

(0)14$S33 21 21q
2 cos2~p@z2H# !

1S33 23 23p
2 sin2~p@z2H# !%z56H$uA1u21uA2u2%.

~4.6b!

Integrating Eq.~4.5! and obeying Eq.~4.6! leads to

]

]z
U1

(2,0)52
]

]j
U3

(0) , ~4.7a!

]

]z
U3

(2,0)52
c12

c11

]

]j
U1

(0)2
4

c11
$S33 21 21q

2 cos2~p@z2H# !

1S33 23 23p
2 sin2~p@z2H# !%$uA1u21uA2u2%.

~4.7b!

The third-order part of the displacement field is ana
gously decomposed as

u(3)5 (
j ,,523

3

U(3,j ,)~z;j,t!exp@ i ~ jqx2,vt !#, ~4.8!

whereU(3,j ,)5U(3,2 j 2,)* .
Equating to zero the prefactors of exp@i(jqx2,vt)# in the

equations of motion and boundary conditions, one may
tain the functionsU(3,j ,)(z) as solutions of inhomogeneou
linear boundary-value problems. These boundary-value p
lems are singular only forj ,,561 andj 5,50. In the case
,51, j 561, we obtain the ordinary differential equation
06660
e
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2H r0v22c44q
21c44

]2

]z2J U2
(3,61 1)

5H 4ivr0

]

]t
A674iqc44

]

]j
A612r1v2A7J

3cos~p@z2H# !1H iqG1
(1,6)~z!1

]

]z
G3

(1,6)~z!J
3uA6u2A61H iqG1

(2,6)~z!1
]

]z
G3

(2,6)~z!J
3uA7u2A61~ iq !22 cos~p@z2H# !

3H S21 21 11

]

]j
U1

(0)1S21 21 33

]

]z
U3

(2,0)~z!J
3A61

]

]z H 22p sin~p@z2H# !FS23 23 11

]

]j
U1

(0)

1S23 23 33

]

]z
U3

(2,0)~z!G J A6 . ~4.9!

The corresponding boundary conditions are

F2c44

]

]z
U2

(3,61 1)G
z56H

5@G3
(1,6)uA6u2A61G3

(2,6)uA7u2A6#z56H

2F2p sin~p@z2H# !S S23 23 11

]

]j
U1

(0)

1S23 23 33

]

]z
U3

(2,0)DA6G
z56H

. ~4.10!

In Eqs. ~4.9! and ~4.10!, we have made use of the fact th
the componentU3

(0) does not couple to the amplitudesA6

and may be chosen to be zero. The functionsGa
( j ,6)(z), j

51,2, a51,3 are not specified here.
By multiplying Eq. ~4.9! with cos(p@z2H#), integrating

over z from 2H to 1H and making use of the boundar
conditions, the following condition for the solvability of th
inhomogeneous problem, Eqs.~4.9! and ~4.10!, is obtained:

2ivr0H ]

]t
6Vg

]

]jJ A61r1v2A7

5@N1uA6u21N2uA7u2#A61MA6

]

]j
U1

(0) .

~4.11!

The coefficientsN1 and N2 depend on cubic anharmoni
coupling coefficientsS2a 2b ab , a,bP$1,3% in a bilinear
way and linearly on the quartic anharmonic coefficie
S21 21 21 21. The coefficientM is explicitly given by
3-5
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M5q2FS21 21 112
c12

c11
S21 21 33G1p2FS23 23 112

c12

c11
S23 23 33G .

~4.12!

In the boundary-value problem forU(3,0), the inhomoge-
neity vanishes andU(3,0) remains undetermined at this stag

The fourth-order fieldu(4) may be decomposed into Fou
rier components in a way similar to Eq.~4.8!,

u(4)5 (
j ,,524

4

U(4,j ,)~z;j,t!exp@ i ~ jqx2,vt !#. ~4.13!

Special attention has to be paid to the equations that hav
be satisfied by the sagittal components ofU(4,00),

2c44

]2

]z2 U1
(4,00)~z!

5~c121c44!
]

]j

]

]z
U3

(2,0)~z!2H r0

]2

]t2 2c11

]2

]j2J U1
(0)

1
]

]z
R1~z!14$S11 21 21q

2 cos2~p@z2H# !

1S11 23 23p
2 sin2~p@z2H# !%

]

]j
@ uA1u21uA2u2#,

~4.14a!

2c11

]2

]z2 U3
(4,00)~z!5~c121c44!

]

]j

]

]z
U1

(2,0)~z!1
]

]z
R3~z!.

~4.14b!

The corresponding boundary conditions are

F2c44

]

]z
U1

(4,00)G
z56H

5Fc44

]

]j
U3

(2,0)1R1G
z56H

,

~4.15a!

F2c11

]

]z
U3

(4,00)G
z56H

5Fc12

]

]j
U1

(2,0)1R3G
z56H

.

~4.15b!

Explicit expressions for the functionsR1 and R3 are not
needed here. The compatibility conditions of this bounda
value problem are obtained by integrating Eq.~4.14! over the
cross section of the plate and using the boundary condit
~4.15!. When doing this for Eq.~4.14a!, we obtain

H r0

]2

]t2 2S c112
c12

2

c11
D ]2

]j2J U1
(0)52M

]

]j
@ uA1u21uA2u2#.

~4.16!

It is the last term on the right-hand side of Eq.~4.14a! that
requires the presence of the quasistatic zero-order fieldU1

(0) ,
while the second compatibility condition containsU3

(0) ,
which may then be chosen to be zero.
06660
.

to

-

ns

The coupled modulation equations~4.11! and ~4.16! are
the plate mode analogs of Eqs.~4!–~6! in Ref. @19# that have
been derived for an optical system. After rescaling, they t
the simple form

i S ]

]t
6

]

]xDB61B75~ uB6u21huB7u2!B61mB6

]

]x
U,

~4.17!

H ]2

]t2 2c2
]2

]x2J U5m
]

]x
@ uB1u21uB2u2# ~4.18!

with real parametersh,m,c. Stationary or moving solitary
solutions can be derived in the same way as demonstrate
Iizuka and Kivshar for their equations, namely, with the a
satz

B6~x,t !5D71/2f ~z!exp@ i ~u1,2~z!2Vt1u0!# ~4.19!

andU(x,t)5u(z), wherez5x2Vt andV is the velocity of
the solitary wave. Making use of the spatial localization
the solitary solution, one obtains from Eq.~4.18!

]

]z
u5

m@D1~1/D!#

V22c2 f 2~z!. ~4.20!

Inserting Eqs.~4.19! and~4.20! into Eq. ~4.17!, one is led to
the same ordinary differential equations foru16u2 and f as
have been solved in Ref.@19#.

The modulation equations~4.17! and ~4.18! can be de-
rived from the Lagrangian density

,5 i H B1*
]

]t
B11B2*

]

]t
B21B1*

]

]j
B12B2*

]

]j
B2J

1B2* B11B1* B22
1

2
~ uB1u41uB2u4!2huB1u2uB2u2

2m~ uB1u21uB2u2!
]

]j
U1

1

2S ]

]t
U D 2

2c2
1

2 S ]

]j
U D 2

.

~4.21!

Identifying continuous symmetries and using Noether’s th
rem, the following four conserved quantities may be deriv

energy E5E H ,2 iB1*
]

]t
B12 iB2*

]

]t
B22S ]

]t
U D 2J dj,

momentum P5E H iB1*
]

]j
B11 iB2*

]

]j
B21S ]

]t
U D

3S ]

]j
U D J dj,

the ‘‘mass’’ N5E $uB1u21uB2u2%dj,

and the quantity
3-6
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E ]

]t
U dj.

This fourth conserved quantity is associated with trans
tional invariance of the plate along thex direction and fol-
lows immediately from Eq.~4.18!, while the corresponding
conservation law for the system of modulation equatio
studied in Ref.@19# is more difficult to derive.

When looking for stationary solutions of the system
Eqs. ~4.17! and ~4.18!, the second time derivative in Eq
~4.18! vanishes, and the variableU may be eliminated to
yield the Mills-Trullinger equations

i S ]

]t
6

]

]xDB61B75F S 12
m2

c2 D uB6u21S h2
m2

c2 D uB7u2G .
~4.22!

However, the time-derivative term in Eq.~4.18! influences
the stability properties of the stationary solitary solution
This becomes evident when Eqs.~4.17! and ~4.18! are lin-
earized around a solitary solution leading to a non-Hermit
eigenvalue problem. The dominant instability of the solita
wave solutions of the Mills-Trullinger equations~4.22! is of
oscillatory character, which is associated with eigenval
that have a small real part (l8, the growth rate! and a large
imaginary part (l9, a frequency! @21#. At distances far away
from the solitary wave, the eigenvector is a linear combi
tion of almost plane waves with complex frequencyl9
2 il8 and wave vectors having a small imaginary part, t
This may be interpreted as the solitary wave decaying via
emission of radiation. In the presence of coupling to the
gree of freedomU, radiation is expected to occur via th
channel, too, i.e., via sound waves with wave vectork
'l9/c. We note, in addition, that translational instabilitie
can occur only in exceptional cases, if at all, since there is
gap in the spectrum of the acoustic fieldU.

In the derivation of the modulation equations~4.17! and
~4.18!, we have assumed that there is no resonance of
Brillouin zone center modes and higher harmonics. T
means, in particular, that there is no linear plate mode
sagittal polarization that has frequency'2v and ~1! wave
vector'62q or ~2! wave vector'0. The latter assumption
means that the frequency of the homogeneous thicknes
bration of the plate is not close to 2v. The case of assump
tion ~1! not being satisfied has been discussed in Ref.@22#
for nonlinear acoustic waves propagating in an elastic fi
covering a semi-infinite substrate and earlier in optical c
texts @23–26#. When assumption~2! is not satisfied, one is
led to the three coupled evolution equations analyzed
Mak, Malomed, and Chu@27# with parameterD50. ~In or-
der to obtain the second-derivative term (DÞ0), an addi-
tional stretched coordinate would have to be introduced.!

V. SURFACE ACOUSTIC ENVELOPE SOLITONS

A. General case

After having discussed modulations of weakly nonline
waves in a free-standing elastic plate, we now consider n
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linear guided acoustic waves in a plate in contact with
semi-infinite elastic medium@Fig. 1~b!#.

In order to describe long-wavelength modulations of s
face acoustic waves in a layered structure, we start with
asymptotic expansion~3.1! of the displacement field, wher
now

u(1)~x,z,t !5AW~zuq!ei (qx2vt)1c.c. ~5.1!

The complex amplitudeA depends on stretched coordinat
X(1),T(1), . . . andW(zuq)exp@i(qx2vt)# is the displacemen
field of a linear surface acoustic wave with wave vectorq
5(q,0) and frequencyv. The depth profile of a surface
acoustic wave,W(zuq), is chosen such thatW(zu2q)
5W* (zuq) and W(0uq) does not depend on the modulu
of q.

For the second-order fieldu(2), we use the decompositio
~3.3! with U(2,0,1)50. When using this decomposition, w
have assumed that there is no waveguide mode with w
vector (2q,0) and frequency 2v. Then,F(2,2) is the solution
of a nonsingular linear boundary value problem satisfy
the boundary conditionF(2,2)(z)→0 as z→2`. For
F(2,0)(z) we obtain again ~3.5!. With the requirement
F(2,0)(z)→0 asz→2`, F(2,0) is then uniquely determined
Explicitly,

Fa
(2,0)~z!52E

2`

z

Gab~z8!Sb3 mn zj~z8!@Dn~ iq !Wm~z8!#

3@Dj~ iq !Wz~z8!#* , ~5.2!

whereGab(z) andSb3 mn zj(z) are step functions taking thei
corresponding values in the film and substrate regions.

In the same way as in the case of plate modes, the c
patibility condition in the linear inhomogeneous bounda
value problem forU(2,1) requires thatA depends onX(1) and
T(1) only via j (1)5X(1)2VgT(1), whereVg is the group ve-
locity of the linear surface wave with wave numberq, and
the explicit solution forU(2,1) is Eq. ~3.6!.

The quantityU(2,0) depends on stretched coordinates on
In order to be able to satisfy the boundary conditions az
→2`, we have to introduce an additional stretched coor
nate Z(1)5«z. The dependence ofU(2,0) on the stretched
coordinates will emerge at higher orders of«, as we shall
show below. Only the displacement field in the substrate
gion depends onZ(1), while in the film, terms proportional to
positive powers ofz are allowed as has been the case in
free-standing plate.

The third-order fieldu(3) has form~3.7! with U(3,n)(z) for
n562,63 being solutions of nonsingular linear boundar
value problems, assuming that there is no resonance of
second and third harmonic with a linear waveguide mo
The solvability condition forU(3,1) yields the nonlinear
Schrödinger equation~3.13!, where nowN̄5N/(2k) andN
andk are defined in Eqs.~3.11! and ~3.12!, respectively. In
the latter two expressions, the integrals overz have now to
be extended from2` to d rather than from2H to H.
3-7
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We now turn to the quasistatic contributionU(3,0) of the
third-order part of the displacement field. It has to satisfy
differential equation

2Ca3 b3Ub,33
(3,0)

5
]

]z
Ja1$Sa1 mn zj@Dn~ iq !Wm#@Dj~ iq !Wz#*

1~Ca1 b31Ca3 b1!Fb,3
(2,0)%

]

]X(1)
uAu2, ~5.3!

subject to the following boundary conditions:

FCa3 b3Ub,3
(3,0)1Ja1Ca3 b1

]

]X(1)
$Fb

(2,0)uAu21Ub
(2,0,0)%

1Ca3 b3

]

]Z(1)
Ub

(2,0,0)G
z502

5FCa3 b3Ub,3
(3,0)1Ja1Ca3 b1

]

]X(1)

3$Fb
(2,0)uAu21Ub

(2,0,0)%G
z501

, ~5.4a!

FCa3 b3Ub,3
(3,0)1Ja1Ca3 b1

]

]X(1)
$Fb

(2,0)uAu21Ub
(2,0,0)%G

z5d

50. ~5.4b!

In addition, the three components ofU(3,0) have to be con-
tinuous at the interface. The quantitiesJa ,a51,2,3 are not
given here explicitly. They decay into the substrate expon
tially as functions ofz.

We now decomposeU(3,0)(z)5U(3,0,0)1U(3,0,1)zu(z)
1U(3,0,E)(z), whereu(z) is the Heavyside step function an
U(3,0,E)(z) decays into the substrate exponentially and is
fined below. The quantitiesU(3,0,0) and U(3,0,1) depend on
stretched coordinates only, and

]

]z
Ua

(3,0,E)~z!52Gab~z!H Jb~z!1E
2`

z

dz8$Sb1 mn zj~z8!

3@Dn~ iq !Wm~z8!#@Dj~ iq !Wz~z8!#*

1@Ca1 b3~z8!1Ca3 b1~z8!#

3Fb,3
(2,0)~z8!%

]

]X(1)
uAu2J . ~5.5!

Inserting this into the boundary conditions, we are led to
following solvability conditions:
06660
e
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e

FCa3 b1
(S) ]

]X(1)
Ub

(2,0,0)1Ca3 b3
(S) ]

]Z(1)
Ub

(2,0,0)G
Z(1)50

5la

]

]X(1)
uAu2 ~5.6!

with real coefficients

la5E
2`

d

dz@Sa1 mn zj~z!2Ca1 g3~z!Ggb~z!Sb3 mn zj~z!#

3@Dn~ iq !Wm~z!#@Dj~ iq !Wz~z!#* . ~5.7!

The superscript~S! refers to the substrate. Since Eq.~5.6!
follows from the boundary conditions at the surface and
terface, the argumentZ(1) in Ub

(2,0,0) on the left-hand side of
Eq. ~5.6! has to be set equal to zero.

At fourth order of the expansion parameter«, the quasi-
static part of the equation of motion for the displaceme
field in the substrate yields for depths much larger than
carrier wavelength:

H dabr (S)
]2

]T(1)2
2Ca1 b1

(S) ]2

]X(1)2
2Ca3 b3

(S) ]2

]Z(1)2

2~Ca1 b3
(S) 1Ca3 b1

(S) !
]2

]X(1)]Z(1)J Ub
(2,0,0)50. ~5.8!

Obviously, Eq.~5.8! are the linear equations of motion in th
substrate involving only stretched coordinates. Equat
~5.6! has to be regarded as boundary conditions for the v
ablesUa

(2,0,0), a51,2,3, at the substrate surface,Z(1)50. A
further boundary condition that has to be imposed is t
U(2,0,0) either decays exponentially asZ(1)→2` or energy is
radiated into the substrate. Since the amplitude of the ca
wave,A, depends onX(1) and T(1) only throughj (1)5X(1)

2VgT(1) with Vg being the group velocity, the solution o
the linear boundary-value problem posed by Eqs.~5.8! and
~5.6! may be written in the form

U(2,0,0)~X(1),Z(1),T(1)!

5E
2`

` dK

2p
exp@ iK j (1)#(

r 51

3

b~r !exp@Kâ~r !Z(1)#I ~K !,

~5.9!

where

I ~K !5E
2`

`

dj (1)uA~j (1)!u2 exp~2 iK j (1)!. ~5.10!

The vectorsb(r ) and coefficientsâ(r ) depend onVg and the
sign of K in Eq. ~5.9!. The coefficientsâ(r ) either have a
positive real part or are purely imaginary. In the latter ca
the acoustic Poynting vector associated with the plane w
exp@iK(X(1)2iâ(r)Z(1)2VgT

(1))#b(r ) is directed into the sub-
strate. The physical interpretation of these findings is as
3-8
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lows: An envelope pulse of a carrier wave with short wav
length 2p/q is accompanied by a wave packet consisting
long-wavelength Fourier components. Depending
whether the group velocity of the carrier wave is smaller
larger than a limiting value~the velocity of transversely po
larized bulk waves in the case of isotropic substrates!, this
wave packet is either localized at the surface or correspo
to radiation into the bulk of the substrate. As this lon
wavelength component appears at second order of the ex
sion parameter« in our asymptotic expansion of the dis
placement field, it does not enter the evolution equation
the envelope of the carrier wave, and the latter is the non
ear Schro¨dinger equation, as has been found in earlier wo
~for a review see Ref.@2#!.

When Vg approaches the phase velocityvR of the Ray-
leigh waves propagating on the uncoated substrate,ub(r )u
diverge and the boundary-value problem, Eqs.~5.8! and
~5.6!, becomes singular. We note that the caseVg5vR is
rather special, but can occur even in a highly dispers
acoustic slab waveguide without inducing a resonance at
second harmonic of the carrier wave’s frequency. For
ample, such a resonance occurs for a certain value ofqd on
the lowest branch of the Love waves, if substrate and film
both isotropic materials and the velocity of transverse b
waves in the film material is smaller than that of the Ra
leigh waves propagating at the surface of the uncoated
strate~Fig. 2!. For the higher-order Love wave branches, t
resonance occurs if the Rayleigh wave velocity of the s
strate is smaller than the velocity of transverse bulk wave
the film material. Nonlinear interactions of long waves a
short waves with the group velocity of the short wave be
equal to the phase velocity of the long wave has been
cussed from a general point of view and for different e
amples by Benney@10,11#. We shall now give a detailed

FIG. 2. Illustration of the resonance condition of lon
wavelength Rayleigh waves and short-wavelength Love waves
longing to the lowest branch. Dispersion curve of Love wav
~thick solid! and Rayleigh waves of the substrate~thin solid!.
vT

(S) ,vT
(F): velocity of transverse sound waves of the substrate

film material, respectively.
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derivation of the corresponding modulation equations for
case of surface acoustic waves, which are found to exhib
specific feature.

In order to avoid secular terms inX(1) or T(1), a term
U (1,0) has to be added to the right-hand side of Eq.~5.1!. It is
continuous across the interface. In the film, it depends o
on stretched coordinatesX(n), T(n), n51,2, . . . , and in the
substrate, it also depends on the stretched depth coordin
Z(n). The second-order part of the displacement field is
form ~3.3! with the modification thatU(2,0,1) is nonzero only
in the film region, while in the spatial region filled by th
substrate,U(2,0,0) depends onZ(n) in addition to X(n) and
T(n), n51,2, . . . . ThequantitiesU(2,1), F(2,2), andF(2,0) are
determined in the same way as before. In particular,F(2,0) is
given by Eq.~5.2!. Inserting Eq.~5.2! into the second-orde
boundary conditions, we obtain at the interface

FCa3 b1
(S) ]

]X(1)
Ub

(1,0)1Ca3 b3
(S) ]

]Z(1)
Ub

(1,0)G
Z(1)50

5FCa3 b1
(F) ]

]X(1)
Ub

(1,0)1Ca3 b3
(F) Ub

(2,0,1)G
Z(1)50

,

~5.11!

and at the surface

FCa3 b1
(F) ]

]X(1)
Ub

(1,0)1Ca3 b3
(F) Ub

(2,0,1)G
Z(1)50

, ~5.12!

which implies

FCa3 b1
(S) ]

]X(1)
Ub

(1,0)1Ca3 b3
(S) ]

]Z(1)
Ub

(1,0)G
Z(1)50

50

~5.13!

and

Ua
(2,0,1)52Gab

(F)Cb3 g1
(F) ]

]X(1)
Ug

(1,0) . ~5.14!

At depthsuzu@1/q the equations of motion at third order of«
lead to

H dabr (S)
]2

]T(1)2
2Ca1 b1

(S) ]2

]X(1)2
2Ca3 b3

(S) ]2

]Z(1)2

2~Ca1 b3
(S) 1Ca3 b1

(S) !
]2

]X(1)]Z(1)J Ub
(1,0)50. ~5.15!

Equation~5.15! together with Eq.~5.13! are the equations o
motion and boundary conditions for a displacement field i
homogeneous substrate with uncoated stress-free sur
Their general solution localized at the surface is a super
sition of ~generalized! Rayleigh waves:

e-
s

d
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U(1,0)5E dK

2p
exp~ iK j (1)!W~Z(1)uK !

3C~K;T(2),X(2),Z(2); . . . !. ~5.16!

Here, W(Z(1)uK) is the depth profile of a linear Rayleig
wave with two-dimensional wave vector (K,0) and the am-
plitudes C(K) depend on stretched coordinat
T(n),X(n),Z(n) with n>2.

The third-order contribution to the displacement field m
again be decomposed asu(3)5(n51

3 $U(3,n)(z)exp@ni(qx
2vt)#1c.c.%1U(3,0)(z). In addition toz, the functionsU(3,n),
n50,1,2,3, depend on the stretched coordinatesT(m),X(m),
m51,2, . . . , and, in the substrate, also onZ(m). In the spa-
tial region filled by the film material, we decompose

U(3,0)~z;T(1),X(1); . . . !5U(3,0,0)~T(1),X(1); . . . !

1zU(3,0,1)~T(1),X(1); . . . !

1 1
2 z2U(3,0,2)~T(1),X(1); . . . !

1U(3,0,E)~z!. ~5.17!

In the substrate region,U(3,0)5U(3,0,0)(T(1),X(1),Z(1); . . . )
1U(3,0,E)(z), i.e.,U(3,0,0) depends on the stretched depth c
ordinatesZ(m). The quantity]U(3,0,E)(z)/]z is given by Eq.
~5.5!. U(3,0,E)(z) is uniquely determined by requiring that
decays exponentially forz→2` and is continuous at the
interface.

We now examine the quasistatic part of the boundary c
ditions at third order of«, which is similar to Eq.~5.4! but
contains some additional terms. On the left-hand side of
~5.4a! ~the boundary condition at the interface!, we have to
add

FCa3 b1
(S) ]

]X(2)
Ub

(1,0)1Ca3 b3
(S) ]

]Z(2)
Ub

(1,0)G
z502

~5.18a!

and on the right-hand side of Eq.~5.4a!,

FCa3 b1
(F) ]

]X(2)
Ub

(1,0)G
z501

. ~5.18b!

To the left-hand side of Eq.~5.4b! ~the boundary condition a
the surface! the following terms have to be added:

Ca3 b1
(F) H ]

]X(2)
Ub

(1,0)1d
]

]X(1)
Ub

(2,0,1)J . ~5.18c!

From the equation of motion in the film region we obtain

Ca3 b3
(F) Ub,33

(3,0)5r (F)
]2

]T(1)2
Ua

(1,0)2Ca1 b1
(F) ]

]X(1)2
Ub

(1,0)

2~Ca3 b1
(F) 1Ca1 b3

(F) !
]

]X(1)
Ub

(2,0,1). ~5.19!
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Combining the boundary conditions~5.4! with Eqs. ~5.18!,
making use of Eqs.~5.14! and ~5.19!, the following relation
is obtained, which plays the role of a boundary condition
the fourth-order equation of motion:

FCa3 b1
(S) H ]

]X(2)
Ub

(1,0)1
]

]X(1)
Ub

(2,0,0)J
1Ca3 b3

(S) H ]

]Z(2)
Ub

(1,0)1
]

]Z(1)
Ub

(2,0,0)J G
Z(1)50

5dF ~Ca1 b1
(F) 2Ca1 m3

(F) Gmn
(F)Cn3 b1

(F) !
]2

]X(1)2
Ub

(1,0)2r (F)

3
]2

]T(1)2
Ua

(1,0)G
Z(1)50

1la

]

]X(1)
uAu2. ~5.20!

In the absence ofU(2,0,0) and A, Eq. ~5.20! is easily recog-
nized as the well-known effective boundary conditions fro
which the influence of the film on the dispersion relation
the Rayleigh waves can be calculated to leading order in
ratio of film thickness and wavelength@29,30#. This bound-
ary condition together with the equation of motion at four
order of« will provide an equation for the evolution of th
amplitudesC(K) of the long-wavelength Rayleigh waves. A
depthsuzu@1/q, the fourth-order equation of motion yields

H dabr (S)
]2

]T(1)2
2Ca1 b1

(S) ]2

]X(1)2
2Ca3 b3

(S) ]2

]Z(1)2

2~Ca3 b1
(S) 1Ca1 b3

(S) !
]2

]X(1)]Z(1)J Ub
(2,0,0)

12H dabr (S)
]2

]T(1)]T(2)
2Ca1 b1

(S) ]2

]X(1)]X(2)

2Ca3 b3
(S) ]2

]Z(1)]Z(2)
2~Ca3 b1

(S) 1Ca1 b3
(S) !

3
1

2S ]2

]X(1)]Z(2)
1

]2

]Z(1)]X(2)D J Ub
(1,0)50. ~5.21!

We are looking for solutionsU(2,0,0) that depend onX(1),T(1)

via the combinationj (1)5X(1)2VgT(1). Consequently, we
may representU(2,0,0) in the substrate region as a Fouri
integral of the form

U(2,0,0)5E dK

2p
exp~ iK j (1)!g~Z(1)uK !. ~5.22!

For U(1,0) anduAu2, we use the Fourier representations~5.10!
and ~5.16!.

We now apply the projection method@28# to the system of
equations of motion~5.21! and boundary conditions~5.20!:
We multiply Eq. ~5.21! by Wa* (Z(1)uK)exp(2iKj(1)), sum
overa, and integrate overj (1) andZ(1). Integrating twice by
3-10



-

e-

g

e
wi

the
liar

d

ave
y-
ary
ch

if-
be

ng
es.

und
ns,

ller
ay-
the

ENVELOPE SOLITONS OF ACOUSTIC PLATE MODES . . . PHYSICAL REVIEW E 67, 066603 ~2003!
parts and making use of Eq.~5.20! and the boundary condi
tions satisfied byU(1,0) at Z(1)50, one may eliminate the
field U(2,0,0) and obtain the following result:

i H kR sgn~K !F ]

]T(2)
1Vg

]

]X(2)G1s
]

]Z(2)J C~K !

52dMK2C~K !2Wa* ~0uK !la iKI ~K !. ~5.23!

The coefficientkR is an integral similar to Eq.~3.12!,

kR52r (S)vRuKu E
2`

0

Wa* ~ZuK !Wa~ZuK ! dZ. ~5.24!

The coefficientM,

M5Wa* ~0uK !$dabr (S)Vg
22Ca1 b1

(S)

1Ca1 m3
(S) Gmn

(S)Cn3 b1
(S) %Wb~0uK !, ~5.25!

does not depend onK and enters the dispersion relation b
tween frequencyv and wave vectorK of the linear Rayleigh
waves of the coated substrate for wavelengths much lon
than the film thickness,

v~K !5vRKF12
Md

vRkR
uKu1O~@Kd#2!G . ~5.26!

The coefficients in front of the derivative with respect to
Z(2),

s52E
2`

0 H Ca3 b3
(S) ImFWa* ~Z(1)uK !

]

]Z(1)
Wb~Z(1)uK !G

1Ca3 b1
(S) Im@Wa* ~Z(1)uK !iKWb~Z(1)uK !#J dZ, ~5.27!

vanishes, since the integrand is proportional to the thr
component of the time-averaged energy flux associated
a Rayleigh wave with wave vector (K,0). Defining the quan-
tity

U0~j (1);T(2),j (2); . . . !

5E dK

2p
iKlaWa~0uK !C~K;T(2),X(2),0; . . . !

3exp~ iK j (1)!, ~5.28!

multiplying Eq. ~5.23! by uKulaWa(0uK)exp(iKj(1)) and in-
tegrating overK yields

kR

]

]T(2)
U01dM

]2

]j (1)2
Ĥ@U0#5F̄

]2

]j (1)2
Ĥ@A2#,

~5.29!

whereF̄5ulaWa(0uK)u2, which is independent ofK.

Ĥ@U#~j!5
P

pE U~j8!

j82j
dj8 ~5.30!
06660
er
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is the Hilbert transform,P indicating the Cauchy principle
value. As has become evident from the above derivation,
appearance of the Hilbert transform is due to the pecu
depth structure of the long-wavelength Rayleigh wave.

The quasistatic long-wavelength fieldU(1,0) enters the
contribution to the third-order equation of motion an
boundary conditions through the derivatives@]U(1,0)/
]X(1)#Z(1)50 and@]U(1,0)/]Z(1)#Z(1)50. Eliminating the latter
in favor of the former by using Eq.~5.13! and proceeding in
the usual way, we finally obtain

H i
]

]T(2)
1

1

2

]2v

]q2

]2

~]j (1)!2J A2~N/k!uAu2A2~1/k!AU0

50. ~5.31!

The coefficientsN andk are again defined in Eqs.~3.11! and
~3.12!, where the integrals have to be extended from2`
to d.

The coupled system of Eqs.~5.31! and ~5.29! are the
modulation equations for a surface acoustic carrier w
with group velocity equal to that of long-wavelength Ra
leigh waves. Obviously, this system of equations has solit
wave solutions corresponding to envelope pulses of se2

form that travel with the group velocityVg and haveU0
50. Whether there are pulse solutions traveling with a d
ferent velocity and whether these are stable remains to
clarified in subsequent work.

To our knowledge, Maugin, Hadouaj, and Malomed@31#
were the first to derive coupled evolution equations for lo
and short waves in the context of surface acoustic wav
They considered shear-horizontal carrier waves and fo
their modulations governed by the Zakharov equatio
which differ from the modulation equations~5.29! and
~5.31!.

B. Thin-film Õsmall-mismatch limit for Rayleigh waves

In a frequency regime where the film thickness is sma
than the typical wavelengths, nonlinear evolution of the R
leigh waves is governed by an evolution equation of
following form:

i
]

]t
B~k,t!5kF E

0

k

F~k8/k!B~k8,t!B~k2k8,t!
dk8

2p

12E
k

`

~k/k8!F* ~k/k8!B~k8,t!

3B* ~k82k,t!
dk8

2p G1D~k!B~k,t! ~5.32!

with k.0 ~see, for example, Refs.@32,7# and corresponding
earlier work@33–38#! andB(k) is the Fourier transform of a
displacement gradient component at the surface, e.g.,u3,1:

u3,1~x,0,t !5E
0

`

B~k,t!exp@ ik~x2vRt !#
dk

2p
1c.c.

~5.33!
3-11
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and t is a stretched time coordinate. Normally,D(k)
5aRk2 with coefficientaR determined by the linear acoust
mismatch between film and substrate. In special case
acoustic mismatch,D(k)}k3. If the second-order elasti
moduli and/or the mass density are varying continuou
near the surface with only small relative deviations fro
their bulk values, Eq.~5.32! is also applicable. The function
D(k) may then have a more complicated dependence ok
with D(k)}k2 ask→0.

The continuous and bounded functionF depends on the
second-order and third-order elastic moduli of the subst
only. @In deriving Eq. ~5.32!, the nonlinearity of the film
material has been neglected.# In terms of the real-space var
able u3,1, the evolution equation~5.32! would exhibit a
highly nonlocal nonlinearity. Equation~5.32! may be com-
pared to the KdV equation, which takes on the form

i
]

]t
B~k,t!5kF0F E

0

k

B~k8,t!B~k2k8,t!
dk8

2p

12E
k

`

B~k8,t!B* ~k82k,t!
dk8

2p G
1a0k3B~k,t! ~5.34!

with real constantF0 after Fourier-transform with respect t
the spatial coordinate.

In order to highlight the difference between the modu
tion equations for the KdV equation~5.34! and the Rayleigh
wave evolution equation~5.32!, we sketch the derivation o
the modulation equations for a carrier wave with wave nu
ber q in the weakly nonlinear regime of Eq.~5.34!. We ex-
pand the Fourier amplitudesB(k) in powers of a expansion
parameterh (0,h!1),

B~k!5hB(1)~k!1h2B(2)~k!1O~h3!, ~5.35!

and introduce further stretched coordinatesT(m)5hmt.
‘‘Slow’’ variations in real space are associated with sm
wave numbersk(m)5hmkm @39,13#, wherekm /q is of order
O(h0). Consequently, we write

B(m)~k,t!5 (
n52`

`

B(m,n)~k1 ,T(1);k2 ,T(2); . . . !

3exp~2 inv0t! ~5.36!

and definev05a0q3, Vg53a0q2. Collecting terms of equa
order in the expansion parameterh, we find

B(1,1)~t;k1 ,T(1); . . . !5Ã~k1 ;T(2); . . . !

3exp~2 iVgk1T(1)2 iVgk2T(2)!,

~5.37!
06660
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B(2,2)~k1 ,T(1); . . . !

52
F0

3a0q2E B(1,1)~k18 ,T(1); . . . !

3B(1,1)~k12k18 ,T(1); . . . !
dk18

2p
. ~5.38!

At third order ofh, the following system of coupled equa
tions is obtained:

i
]

]T(2)
Ã~k1 ;T(2)!

53a0qk1
2Ã~k1 ;T(2)!2

2F0
2

3a0qE E Ã* ~k182k1 ;T(2)!

3Ã~k19 ;T(2)!Ã~k182k19 ;T(2)!
dk18

2p

dk19

2p

12qF0E Ã~k12k18 ;T(2)!B̃(2,0)~k18 ,T(1);T(2)!
dk18

2p
,

~5.39!

H i
]

]T(1)
1Vgk1J B̃(2,0)~k1 ,T(1);T(2)!

52k1F0E Ã* ~k18 ;T(2)!Ã~k181k1 ;T(2)!
dk18

2p
,

~5.40!

where

B̃(n,0)~k1 ,T(1);T(2)!5B(n,0)~k1 ,T(1);T(2)!

3exp~ iVgk1T(1)1 iVgk2T(2)!.

Transforming these two equations back into real space,

A~j (1),T(2)!5E dk1

2p
Ã~k1 ;T(2)!exp~ ik1j (1)!, ~5.41!

U0~j (1),T(1);T(2)!5E dk1

2p
B̃(2,0)~k1 ,T(1);T(2)!exp~ ik1j (1)!,

~5.42!

one gets the familiar set of coupled modulation equatio
@13#:

05 i
]

]T(2)
A13a0q

]2

]j (1)2
A1

2F0
2

3a0q
uAu2A22qF0AU0 ,

~5.43!

]

]T(1)
U0522F0

]

]j (1)
uAu2. ~5.44!

Going now through the same arguments for the evolut
equation~5.32! instead of the KdV equation, we find that du
3-12
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to factork/k8 in the second nonlinear term in Eq.~5.32!, the
nonlinearity in the quasistatic part of the evolution equat
enters only at fourth order of the expansion parameterh.
Consequently, one obtains instead of Eq.~5.40!,

H i
]

]T(1)
1Vgk1J B̃(2,0)~k1 ,T(1);T(2)!50 ~5.45!

and may setB̃(2,0)50. HereVg is the deviation of the group
velocity associated with the carrier wave from the Rayle
wave velocityvR . At the next order ofh,

H i
]

]T(1)
1Vgk1J B̃(3,0)~k1 ,T(1);T(2)!

52
k1

2

q
F* ~0!E Ã* ~k18 ;T(2)!Ã~k181k1 ;T(2)!

dk18

2p
.

~5.46!

As long asVgÞ0, Eq.~5.46! may be solved forB̃(3,0) with-
out involving secular terms inT(1). However,B̃(3,0) does not
enter the third-order equation corresponding to Eq.~5.39!,
which now takes the form

i
]

]T(2)
Ã~k1 ;T(2)!5

1

2 F]2D~k!

]k2 G
k5q

k1
2Ã~k1 ;T(2)!,

2
2uF~1/2!u2

D~2q!22D~q!
E E Ã* ~k18 ;T(2)!Ã~k19 ;T(2)!

3Ã~k182k19 ;T(2)!
dk18

2p

dk19

2p
. ~5.47!

After Fourier transform, this becomes the nonline
Schrödinger equation~3.13! with v replaced byD and

N̄5
2uF~1/2!u2

2D~q!2D~2q!
. ~5.48!

It was shown in Ref.@2# that the expression forN/k in Eq.
~5.31! derived in the previous subsection converges to
~5.48! in the limit of small dispersion.

The special caseVg50 corresponds to the equality o
group velocity of the carrier wave and phase velocity of
long-wavelength Rayleigh waves. In order to avoid secu
terms that would arise in Eq.~5.46!, B(2,0) is again needed
and one obtains as a compatibility condition fork1.0:

052 i
]

]T(2)
B(2,0)~k1 ;T(2)!

1
1

2 F]2D~k!

]k2 G
k50

k1
2B(2,0)~k1 ;T(2)!

12F* ~0!
k1

2

q E dk18

2p
Ã~k18 ;T(2)!Ã* ~k182k1 ;T(2)!.

~5.49!
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On the right-hand side of Eq.~5.47!, the following term has
to be added:

12qE
0

. . . dk18

2p
$F~0!B(2,0)~k18 ;T(2)!Ã~k12k18 ;T(2)!

1F* ~0!B(2,0)* ~k18 ;T(2)!Ã~k11k18 ;T(2)!%. ~5.50!

Equations~5.49! and ~5.47! with the additional term~5.50!
lead to the set of coupled modulation equations~5.29! and
~5.31!, which are thus obtained in an independent way in
limit of a thin film or small acoustic mismatch between su
strate and film.

VI. CONCLUSION

The goal of this paper was to derive envelope equati
that govern gradual modulations of weakly nonlinear wav
in acoustic waveguides. Particular attention has been pa
the interaction of a short-wavelength carrier wave with lon
wavelength components of the displacement field. Three
ample systems have been treated in detail:~1! a homoge-
neous elastic plate,~2! an elastic plate with certain materia
properties such as its mass density varying periodically al
the direction of wave propagation, and~3! surface acoustic
waves on a substrate coated by a film consisting of a mate
different from that of the substrate. In case~1!, the nonlinear
Schrödinger equation for the complex amplitude of the ca
rier wave is nonlinearly coupled to the wave equation for
real amplitude of the quasilongitudinal plate mode. This s
tem of modulation equations~3.8! and ~3.9! is the well-
known Zakharov system@9,12,31# ~or an extended version o
it in the general case!. In case~2!, we have derived a system
of three coupled evolution equations~4.17! and ~4.18! that
are extensions of the well-known gap soliton equations@18#
and the acoustic analogs of corresponding equations der
recently by Iizuka and Kivshar@19# for an optical system.
For weakly nonlinear surface acoustic waves~system 3!, we
have shown that their modulations are normally governed
a single nonlinear Schro¨dinger equation. However, there is
resonant long-wave short-wave interaction, when the gr
velocity of the carrier wave is equal to the phase velocity
long-wavelength Rayleigh waves in the absence of the fi
For this resonant situation, the coupled modulation equati
~5.29! and ~5.31! have been derived. These involve Hilbe
transforms that typically occur in the context of surfa
acoustic waves.
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